Skip to main content

Optimizing Multiparametric Magnetic Resonance Imaging for a Focal Therapy Practice: Quality Improvement

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 974 Accesses

Abstract

Prostate magnetic resonance imaging (MRI) has been used for three decades, though it has only recently reached sufficient levels of quality to be reliably used in clinical applications. The main difference between the prostate MRI of yesterday and the prostate MRI of today is the multiparametric nature of the technique, consisting of high-resolution anatomical T2-weighted imaging (T2WI) and at least two functional parameters—most commonly diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) sequences. This new form of prostate multiparametric MRI (mpMRI) can play multiple roles throughout the process of a patient receiving focal therapy: the initial diagnosis and evaluation for candidacy for focal therapy, image guidance for targeted biopsy and/or focal therapy, and follow-up imaging to detect treated tissue, potential residual disease, or disease recurrence. There are opportunities for the incorporation of quality improvement at each of these steps, which will be discussed further in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller BG, van den Bos W, Brausi M, Cornud F, Gontero P, Kirkham A, et al. Role of multiparametric magnetic resonance imaging (MRI) in focal therapy for prostate cancer: a Delphi consensus project. BJU Int. 2014;114(5):698–707.

    Article  PubMed  Google Scholar 

  2. Kruskal JB, Eisenberg R, Sosna J, Yam CS, Kruskal JD, Boiselle PM. Quality initiatives: quality improvement in radiology: basic principles and tools required to achieve success. Radiographics. 2011;31(6):1499–509.

    Article  PubMed  Google Scholar 

  3. Gupta RT, Kauffman CR, Polascik TJ, Taneja SS, Rosenkrantz AB. The state of prostate MRI in 2013. Oncology (Williston Park). 2013;27(4):262–70.

    Google Scholar 

  4. Cornud F, Rouanne M, Beuvon F, Eiss D, Flam T, Liberatore M, et al. Endorectal 3D T2-weighted 1 mm-slice thickness MRI for prostate cancer staging at 1.5Tesla: should we reconsider the indirects signs of extracapsular extension according to the D’Amico tumor risk criteria? Eur J Radiol. 2012;81(4):e591–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenkrantz AB, Neil J, Kong X, Melamed J, Babb JS, Taneja SS, et al. Prostate cancer: comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. AJR Am J Roentgenol. 2010;194(2):446–52.

    Article  PubMed  Google Scholar 

  6. ACR. PI-RADS: prostate imaging – reporting and data system version 2 2015 [Available from: http://www.acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/PIRADS/PIRADS.V2.pdf.

  7. Turkbey B, Shah VP, Pang Y, Bernardo M, Xu S, Kruecker J, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258(2):488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Somford DM, Hambrock T, van de Hulsbergen- KCA, Futterer JJ, van Oort IM, van Basten JP, et al. Initial experience with identifying high-grade prostate cancer using diffusion-weighted MR imaging (DWI) in patients with a Gleason score </= 3 + 3 = 6 upon schematic TRUS-guided biopsy: a radical prostatectomy correlated series. Investig Radiol. 2012;47(3):153–8.

    Google Scholar 

  9. Kim TH, Jeong JY, Lee SW, Kim CK, Park BK, Sung HH, et al. Diffusion-weighted magnetic resonance imaging for prediction of insignificant prostate cancer in potential candidates for active surveillance. Eur Radiol. 2015;25(6):1786–92.

    Article  PubMed  Google Scholar 

  10. Tamada T, Kanomata N, Sone T, Jo Y, Miyaji Y, Higashi H, et al. High b value (2000 s/mm2) diffusion-weighted magnetic resonance imaging in prostate cancer at 3 Tesla: comparison with 1000 s/mm2 for tumor conspicuity and discrimination of aggressiveness. PLoS One. 2014;9(5):e96619.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rosenkrantz AB, Hindman N, Lim RP, Das K, Babb JS, Mussi TC, et al. Diffusion-weighted imaging of the prostate: comparison of b1000 and b2000 image sets for index lesion detection. J Magn Reson Imaging. 2013;38(3):694–700.

    Article  PubMed  Google Scholar 

  12. Metens T, Miranda D, Absil J, Matos C. What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3 T? Eur Radiol. 2012;22(3):703–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kitajima K, Takahashi S, Ueno Y, Yoshikawa T, Ohno Y, Obara M, et al. Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultra-high b-value (2000 s/mm(2)) and standard high b-value (1000 s/mm(2)). J Magn Reson Imaging. 2012;36(1):198–205.

    Article  PubMed  Google Scholar 

  14. Grant KB, Agarwal HK, Shih JH, Bernardo M, Pang Y, Daar D, et al. Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging. 2015;40(3):578–86.

    Article  PubMed  Google Scholar 

  15. Nicholson B, Schaefer G, Theodorescu D. Angiogenesis in prostate cancer: biology and therapeutic opportunities. Cancer Metastasis Rev. 2001;20(3-4):297–319.

    Article  CAS  PubMed  Google Scholar 

  16. Engelbrecht MR, Huisman HJ, Laheij RJ, Jager GJ, van Leenders GJ, van de Hulsbergen- KCA, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology. 2003;229(1):248–54.

    Article  PubMed  Google Scholar 

  17. Tan CH, Hobbs BP, Wei W, Kundra V. Dynamic contrast-enhanced MRI for the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol. 2015;204(4):W439–48.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rosenkrantz AB, Sabach A, Babb JS, Matza BW, Taneja SS, Deng FM. Prostate cancer: comparison of dynamic contrast-enhanced MRI techniques for localization of peripheral zone tumor. AJR Am J Roentgenol. 2013;201(3):W471–8.

    Article  PubMed  Google Scholar 

  19. Scheenen TW, Futterer J, Weiland E, van Hecke P, Lemort M, Zechmann C, et al. Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Investig Radiol. 2011;46(1):25–33.

    Article  Google Scholar 

  20. Weinreb JC, Blume JD, Coakley FV, Wheeler TM, Cormack JB, Sotto CK, et al. Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology. 2009;251(1):122–33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leake JL, Hardman R, Ojili V, Thompson I, Shanbhogue A, Hernandez J, et al. Prostate MRI: access to and current practice of prostate MRI in the United States. J Am Coll Radiol. 2014;11(2):156–60.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang KJ, Kamel IR, Macura KJ, Bluemke DA. 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics. 2008;28(7):1983–98.

    Article  PubMed  Google Scholar 

  23. Heijmink SW, Futterer JJ, Hambrock T, Takahashi S, Scheenen TW, Huisman HJ, et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance. Radiology. 2007;244(1):184–95.

    Article  PubMed  Google Scholar 

  24. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22(4):746–57.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bratan F, Niaf E, Melodelima C, Chesnais AL, Souchon R, Mege-Lechevallier F, et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol. 2013;23(7):2019–29.

    Article  PubMed  Google Scholar 

  26. Costa DN, Yuan Q, Xi Y, Rofsky NM, Lenkinski RE, Lotan Y, et al. Comparison of prostate cancer detection at 3-T MRI with and without an endorectal coil: a prospective, paired-patient study. Urol Oncol. 2016;34(6):255.e7–255.e13.

    Article  Google Scholar 

  27. Rosenkrantz AB, Mussi TC, Hindman N, Lim RP, Kong MX, Babb JS, et al. Impact of delay after biopsy and post-biopsy haemorrhage on prostate cancer tumour detection using multi-parametric MRI: a multi-reader study. Clin Radiol. 2012;67(12):e83–90.

    Article  CAS  PubMed  Google Scholar 

  28. Rosen Y, Bloch BN, Lenkinski RE, Greenman RL, Marquis RP, Rofsky NM. 3T MR of the prostate: reducing susceptibility gradients by inflating the endorectal coil with a barium sulfate suspension. Magn Reson Med. 2007;57(5):898–904.

    Article  CAS  PubMed  Google Scholar 

  29. Rosenkrantz AB, Bennett GL, Doshi A, Deng FM, Babb JS, Taneja SS. T2-weighted imaging of the prostate: impact of the BLADE technique on image quality and tumor assessment. Abdom Imaging. 2015;40(3):552–9.

    Article  PubMed  Google Scholar 

  30. Rosenkrantz AB, Geppert C, Grimm R, Block TK, Glielmi C, Feng L, et al. Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: preliminary experience. J Magn Reson Imaging. 2015;41(5):1365–73.

    Article  PubMed  Google Scholar 

  31. Rosenkrantz AB, Chandarana H, Pfeuffer J, Triolo MJ, Shaikh MB, Mossa DJ, et al. Zoomed echo-planar imaging using parallel transmission: impact on image quality of diffusion-weighted imaging of the prostate at 3 T. Abdom Imaging. 2015;40(1):120–6.

    Article  PubMed  Google Scholar 

  32. Rouviere O. Imaging techniques for local recurrence of prostate cancer: for whom, why and how? Diagn Interv Imaging. 2012;93(4):279–90.

    Article  CAS  PubMed  Google Scholar 

  33. Rouviere O, Sbihi L, Gelet A, Chapelon JY. Salvage high-intensity focused ultrasound ablation for prostate cancer local recurrence after external-beam radiation therapy: prognostic value of prostate MRI. Clin Radiol. 2013;68(7):661–7.

    Article  CAS  PubMed  Google Scholar 

  34. Niaf E, Lartizien C, Bratan F, Roche L, Rabilloud M, Mege-Lechevallier F, et al. Prostate focal peripheral zone lesions: characterization at multiparametric MR imaging--influence of a computer-aided diagnosis system. Radiology. 2014;271(3):761–9.

    Article  PubMed  Google Scholar 

  35. Garcia-Reyes K, Passoni NM, Palmeri ML, Kauffman CR, Choudhury KR, Polascik TJ, et al. Detection of prostate cancer with multiparametric MRI (mpMRI): effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis. Abdom Imaging. 2015;40(1):134–42.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rosenkrantz AB, Taneja SS. Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. AJR Am J Roentgenol. 2014;202(1):109–20.

    Article  PubMed  Google Scholar 

  37. Latchamsetty KC, Borden Jr LS, Porter CR, Lacrampe M, Vaughan M, Lin E, et al. Experience improves staging accuracy of endorectal magnetic resonance imaging in prostate cancer: what is the learning curve? Can J Urol. 2007;14(1):3429–34.

    PubMed  Google Scholar 

  38. Rosenkrantz AB, Ginocchio LA, Cornfeld D, Froemming AT, Gupta RT, Turkbey B, Westphalen AC, Babb JS, Margolis DJ. Interobserver Reproducibility of the PI-RADS Version 2 Lexicon: A Multicenter Study of Six Experienced Prostate Radiologists. Radiology. 2016 Sep;280(3):793–804.

    Google Scholar 

  39. Muller BG, van den Bos W, Pinto PA, de la Rosette JJ. Imaging modalities in focal therapy: patient selection, treatment guidance, and follow-up. Curr Opin Urol. 2014;24(3):218–24.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Orczyk C, Rusinek H, Rosenkrantz AB, Mikheev A, Deng FM, Melamed J, et al. Preliminary experience with a novel method of three-dimensional co-registration of prostate cancer digital histology and in vivo multiparametric MRI. Clin Radiol. 2013;68(12):e652–8.

    Article  CAS  PubMed  Google Scholar 

  41. Trivedi H, Turkbey B, Rastinehad AR, Benjamin CJ, Bernardo M, Pohida T, et al. Use of patient-specific MRI-based prostate mold for validation of multiparametric MRI in localization of prostate cancer. Urology. 2012;79(1):233–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Le Nobin J, Rosenkrantz AB, Villers A, Orczyk C, Deng FM, Melamed J, et al. Image guided focal therapy for magnetic resonance imaging visible prostate cancer: defining a 3-dimensional treatment margin based on magnetic resonance imaging histology co-registration analysis. J Urol. 2015;194(2):364–70.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cornud F, Khoury G, Bouazza N, Beuvon F, Peyromaure M, Flam T, et al. Tumor target volume for focal therapy of prostate cancer-does multiparametric magnetic resonance imaging allow for a reliable estimation? J Urol. 2014;191(5):1272–9.

    Article  CAS  PubMed  Google Scholar 

  44. Bratan F, Melodelima C, Souchon R, Hoang Dinh A, Mege-Lechevallier F, Crouzet S, et al. How accurate is multiparametric MR imaging in evaluation of prostate cancer volume? Radiology. 2015;275(1):144–54.

    Article  PubMed  Google Scholar 

  45. Mazaheri Y, Hricak H, Fine SW, Akin O, Shukla-Dave A, Ishill NM, et al. Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology. 2009;252(2):449–57.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313(4):390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bomers JG, Sedelaar JP, Barentsz JO, Futterer JJ. MRI-guided interventions for the treatment of prostate cancer. AJR Am J Roentgenol. 2012;199(4):714–20.

    Article  PubMed  Google Scholar 

  48. Lindner U, Lawrentschuk N, Trachtenberg J. Image guidance for focal therapy of prostate cancer. World J Urol. 2010;28(6):727–34.

    Article  CAS  PubMed  Google Scholar 

  49. Stafford RJ, Shetty A, Elliott AM, Klumpp SA, McNichols RJ, Gowda A, et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol. 2010;184(4):1514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lindner U, Lawrentschuk N, Weersink RA, Davidson SR, Raz O, Hlasny E, et al. Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol. 2010;57(6):1111–4.

    Article  PubMed  Google Scholar 

  51. Cepek J, Lindner U, Ghai S, Louis AS, Davidson SR, Gertner M, et al. Mechatronic system for in-bore MRI-guided insertion of needles to the prostate: an in vivo needle guidance accuracy study. J Magn Reson Imaging. 2015;42(1):48–55.

    Article  PubMed  Google Scholar 

  52. Cepek J, Chronik BA, Lindner U, Trachtenberg J, Davidson SR, Bax J, et al. A system for MRI-guided transperineal delivery of needles to the prostate for focal therapy. Med Phys. 2013;40(1):012304.

    Article  PubMed  Google Scholar 

  53. Chopra R, Tang K, Burtnyk M, Boyes A, Sugar L, Appu S, et al. Analysis of the spatial and temporal accuracy of heating in the prostate gland using transurethral ultrasound therapy and active MR temperature feedback. Phys Med Biol. 2009;54(9):2615–33.

    Article  PubMed  Google Scholar 

  54. Siddiqui K, Chopra R, Vedula S, Sugar L, Haider M, Boyes A, et al. MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology. 2010;76(6):1506–11.

    Article  PubMed  Google Scholar 

  55. Rouviere O, Lyonnet D, Raudrant A, Colin-Pangaud C, Chapelon JY, Bouvier R, et al. MRI appearance of prostate following transrectal HIFU ablation of localized cancer. Eur Urol. 2001;40(3):265–74.

    Article  CAS  PubMed  Google Scholar 

  56. van den Bosch MA, Josan S, Bouley DM, Chen J, Gill H, Rieke V, et al. MR imaging-guided percutaneous cryoablation of the prostate in an animal model: in vivo imaging of cryoablation-induced tissue necrosis with immediate histopathologic correlation. J Vasc Interv Radiol. 2009;20(2):252–8.

    Article  PubMed  Google Scholar 

  57. Larson BT, Collins JM, Huidobro C, Corica A, Vallejo S, Bostwick DG. Gadolinium-enhanced MRI in the evaluation of minimally invasive treatments of the prostate: correlation with histopathologic findings. Urology. 2003;62(5):900–4.

    Article  PubMed  Google Scholar 

  58. Djavan B, Zlotta AR, Susani M, Heinz G, Shariat S, Silverman DE, et al. Transperineal radiofrequency interstitial tumor ablation of the prostate: correlation of magnetic resonance imaging with histopathologic examination. Urology. 1997;50(6):986–92. discussion 92–3

    Article  CAS  PubMed  Google Scholar 

  59. Baco E, Gelet A, Crouzet S, Rud E, Rouviere O, Tonoli-Catez H, et al. Hemi salvage high-intensity focused ultrasound (HIFU) in unilateral radiorecurrent prostate cancer: a prospective two-centre study. BJU Int. 2014;114(4):532–40.

    Article  PubMed  Google Scholar 

  60. Bahn D, de Castro Abreu AL, Gill IS, Hung AJ, Silverman P, Gross ME, et al. Focal cryotherapy for clinically unilateral, low-intermediate risk prostate cancer in 73 men with a median follow-up of 3.7 years. Eur Urol. 2012;62(1):55–63.

    Article  PubMed  Google Scholar 

  61. Pisters LL, Rewcastle JC, Donnelly BJ, Lugnani FM, Katz AE, Jones JS. Salvage prostate cryoablation: initial results from the cryo on-line data registry. J Urol. 2008;180(2):559–63. discussion 63-4

    Article  PubMed  Google Scholar 

  62. Panebianco V, Barchetti F, Grompone MD, Colarieti A, Salvo V, Cardone G, et al. Magnetic resonance imaging for localization of prostate cancer in the setting of biochemical recurrence. Urol Oncol. 2016;34(7):303–10.

    Article  PubMed  Google Scholar 

  63. Litjens GJ, Huisman HJ, Elliott RM, Shih NN, Feldman MD, Viswanath S, et al. Quantitative identification of magnetic resonance imaging features of prostate cancer response following laser ablation and radical prostatectomy. J Med Imaging (Bellingham). 2014;1(3):035001.

    Article  Google Scholar 

  64. Rouviere O, Girouin N, Glas L, Ben Cheikh A, Gelet A, Mege-Lechevallier F, et al. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI. Eur Radiol. 2010;20(1):48–55.

    Article  PubMed  Google Scholar 

  65. Del Vescovo R, Pisanti F, Russo V, Battisti S, Cazzato RL, D’Agostino F, et al. Dynamic contrast-enhanced MR evaluation of prostate cancer before and after endorectal high-intensity focused ultrasound. Radiol Med. 2013;118(5):851–62.

    Article  CAS  PubMed  Google Scholar 

  66. Ben Cheikh A, Girouin N, Ryon-Taponnier P, Mege-Lechevallier F, Gelet A, Chapelon JY, et al. MR detection of local prostate cancer recurrence after transrectal high-intensity focused US treatment: preliminary results. J Radiol. 2008;89(5 Pt 1):571–7.

    Article  CAS  PubMed  Google Scholar 

  67. Punwani S, Emberton M, Walkden M, Sohaib A, Freeman A, Ahmed H, et al. Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease. Br J Radiol. 2012;85(1014):720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boutier R, Girouin N, Cheikh AB, Belot A, Rabilloud M, Gelet A, et al. Location of residual cancer after transrectal high-intensity focused ultrasound ablation for clinically localized prostate cancer. BJU Int. 2011;108(11):1776–81.

    Article  PubMed  Google Scholar 

Download references

Financial Disclosures

RTG—None relevant to this work. Outside of this work, Consultant, Invivo Corp.

JNH—None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan T. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Holtz, J.N., Gupta, R.T. (2017). Optimizing Multiparametric Magnetic Resonance Imaging for a Focal Therapy Practice: Quality Improvement. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-49911-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49911-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49910-9

  • Online ISBN: 978-3-319-49911-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics