Skip to main content

Maximum Power Point Tracking (MPPT) Algorithms for Photovoltaic Systems

  • Chapter
  • First Online:
Energy Harvesting and Energy Efficiency

Part of the book series: Lecture Notes in Energy ((LNEN,volume 37))

Abstract

The solar energy have become a challenging area among other renewable energy sources (RESs) since the photovoltaic (PV) systems have the advantages of not causing pollution, having low maintenance, and long-lasting operation life. Besides these advantages, a PV system has several drawbacks such as considerably higher installation cost comparing some other RESs, and limited efficiency ranges between 9–18%. The feasibility analyses have a great role in order to determine the most appropriate plant site before installation. On the other hand, the operating analyses and improvements based on maximum power point tracking (MPPT) are quite important to increase the harvested total energy. The intermittent characteristic and perturbing power curve of a PV module is one of the most important defects that should be tackled to increase the generation efficiency. The power-voltage (P-V) and current-voltage (I-V) curves are main efficiency indicators of a PV system that exhibit nonlinear characteristics in its natural structure. Furthermore, the generated maximum power with a PV panel depends on two main quantities of temperature and irradiation. However, it is possible to increase the generated power up to maximum rates by MPPT algorithms. This chapter introduces most widely used algorithms respecting to their implementation and utilization properties. The indirect, direct, and computational methods are presented considering their advantages and disadvantages. The conventional and novel algorithms are explained with flowcharts and analytical details in order to provide clear comparison. The artificial methods are expressed in the last section where fuzzy logic, artificial intelligence, and optimization-based approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

Artificial Bee Colony

AF:

Activation Function

ANN:

Artificial Neural Network

COA:

Centroid of Area

CV:

Constant Voltage

EMI:

Electromagnetic Interference

ESS:

Energy Storage System

FLC:

Fuzzy Logic Controller

GA:

Genetic Algorithm

HC:

Hill Climbing

IncCond:

Incremental Conductance

I-V:

Current-Voltage

MLI:

Multilevel Inverter

MLP:

Multilayer Perceptron

MPPT:

Maximum Power Point Tracking

OV:

Open Voltage

P&O:

Perturb and Observe

PSO:

Particle Swarm Optimization

PV:

Photovoltaic

P-V:

Power-Voltage

RES:

Renewable Energy Source

SCPB:

Short-Current Pulse-Based

THD:

Total Harmonic Distortion

References

  1. Twidell J, Weir T (2006) Renewable energy sources. Taylor & Francis, London ISBN 0-419-25330-0

    Google Scholar 

  2. Kabalcı E, Kabalcı Y, Develi I (2012) Int J Electr Power Energy Syst 34:19–28

    Article  Google Scholar 

  3. Masters GM (2004) Renewable and efficient electric power systems. Wiley-IEEE Press. ISBN: 13: 978-0471280606

    Google Scholar 

  4. Colak I, Kabalci E (2014) Chapter 7-Control methods applied in renewable energy, use, operation and maintenance of renewable energy systems. Springer, pp 205–246. doi:10.1007/978-3-319-03224-5_7. ISBN: 978-3-319-03224-5

  5. Zeman M (2014) Chapter 9-Photovoltaic systems, Delft University of Technology

    Google Scholar 

  6. Hersch P, Zweibel K (1982) Basic photovoltaic principles and methods, SERI/SP-290-1448 solar information module 6213. Golden, Colorado

    Google Scholar 

  7. Gray JL (2003) In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, West Sussex, pp 61–112

    Google Scholar 

  8. Kabalcı E, Gokkus G, Gorgun A (2015) 7th international conference electronics, computers and artificial intelligence, Bucharest, Romania, 25–27 June 2015, pp SG23–SG28

    Google Scholar 

  9. Lineykin S, Averbukh M, Kuperman A (2014) IEEE Trans Ind Electron 61:6785–6793

    Article  Google Scholar 

  10. Kadri R, Gaubert JP, Champenois G (2012) IEEE Trans Power Electron 27:1249–1258

    Article  Google Scholar 

  11. d’Alessandro V, Guerriero P, Daliento S, Gargiulo M (2011) Solid State Electron 63:130–136

    Google Scholar 

  12. Tian H, David F, Ellis K, Muljadi E, Jenkins P (2012) Sol Energy 86:2695–2706

    Article  Google Scholar 

  13. Panasonic HIT Photovoltaic Module, HIT Power 240S. http://www.panasonic.com/business/pesna/includes/pdf/eco-construction-solution/HIT_Power_SA06_Series_(240W)_Data_sheet-v2.pdf

  14. Radjai T, Rahmani L, Mekhilef S, Gaubert JP (2014) Sol Energy 110:325–337

    Article  Google Scholar 

  15. Pradhan R, Subudhi B (2015) Int J Electr Power Energy Syst 64:792–803

    Article  Google Scholar 

  16. Mohanty P, Bhuvaneswari G, Balasubramanian R, Dhaliwal NK (2014) Renew Sustain Energy Rev 38:581–593

    Article  Google Scholar 

  17. Bendib B, Krim F, Belmili H, Almi MF, Boulouma S (2014) Energy Procedia 50:383–392

    Article  Google Scholar 

  18. Wu JC, Wu K, Jou HL, Chang SK (2014) IET Power Electron 7:2717–2725

    Article  Google Scholar 

  19. Jiang J, Su YL, Shieh J, Kuo K, Lin T, Lin T, Fang W, Chou J, Wang J (2014) Appl Energy 124:309–324

    Article  Google Scholar 

  20. Zheng H (2013) Solar photovoltaic energy generation and conversion—from devices to grid integration. PhD dissertation, Department of Electrical and Computer Engineering, Graduate School of The University of Alabama, Tuscaloosa, Alabama

    Google Scholar 

  21. Lorenzani E, Franceschini G, Bellini A, Tassoni C (2014) Chapter 6-Single-phase grid connected converters for photovoltaic plants, renewable energy. In: Hammons TJ (ed) InTech. ISBN: 978-953-7619-52-7

    Google Scholar 

  22. Rezk H, Eltamaly A (2015) Sol Energy 112:1–11

    Article  Google Scholar 

  23. Bendib B, Belmili H, Krim F (2015) Renew Sustain Energy Rev 45:637–648

    Article  Google Scholar 

  24. Sivakumar P, Kader AA, Kaliavaradhan Y, Arutchelvi M (2015) Renew Energy 81:543–550

    Article  Google Scholar 

  25. Eltawil MA, Zhao Z (2013) Renew Sustain Energy Rev 25:793–813

    Article  Google Scholar 

  26. Dolara A, Faranda R, Leva SJ (2009) Electromagn Anal Appl 3:152–162

    Google Scholar 

  27. Faranda R, Leva S; Maugeri V (2008) Power and energy society general meeting—conversion and delivery of electrical energy in the 21st century, 20–24 July 2008, pp 1–6

    Google Scholar 

  28. Faranda R, Leva S (2008) WSEAS Trans Power Syst 3:446–455

    Google Scholar 

  29. Onat N (2010) Recent developments in maximum power point tracking technologies for photovoltaic systems. Int J Photoenergy 1:1–11

    Google Scholar 

  30. Park M, Yu K (2004) In: 30th annual conference of IEEE industrial electronics society, pp 2040–2045

    Google Scholar 

  31. Coelho RF, Concer FM, Martins DC (2010) 2010 IEEE international conference on sustainable energy technologies (ICSET), pp 1–6

    Google Scholar 

  32. Rújula AA, Abián JA (2014) Sol Energy 109:95–104

    Article  Google Scholar 

  33. Ahmed J, Salam Z (2015) Appl Energy 150:97–108

    Article  Google Scholar 

  34. Kabalci E, Kabalci Y, Canbaz R, Gokkus G (2015) 4th international conference on renewable energy research and applications (ICRERA 2015), Palermo, Italy, 22–25 November 2015

    Google Scholar 

  35. Kabalci E, Gokkus G, Gorgun A (2015) ECAI 2015 7th international conference electronics, computers and artificial intelligence, Bucharest, Romania, 25–27 June 2015, pp SG23–SG28

    Google Scholar 

  36. Sea TY, Ka JS, Lee, CU, Chung DH (2013) 13th international conference on control, automation and systems (ICCAS 2013). IEEE

    Google Scholar 

  37. Hohm DP, Ropp ME (2003) Prog Photovolt Res Appl 11:47–62

    Article  Google Scholar 

  38. Hsieh GC, Hsieh H, Tsai CY, Wang CH (2013) IEEE Trans Power Electron 28:2895–2911

    Article  Google Scholar 

  39. Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R (2013) IEEE J Photovoltaics 3:1070–1078

    Article  Google Scholar 

  40. Tey KS, Mekhilef S (2014) Sol Energy 101:333–342

    Article  Google Scholar 

  41. Mohd Zainuri MAA, Mohd Radzi MA, Soh AC, Rahim NA (2014) IET Renew Power Gener 8:183–194

    Article  Google Scholar 

  42. Chiu C (2010) IEEE Trans Energy Convers 25:1123–1132

    Article  Google Scholar 

  43. Chiu C, Ouyang Y (2011) IEEE Trans Control Syst Technol 19:1516–1526

    Article  Google Scholar 

  44. El Khateb A, Abd Rahim N, Selvaraj J, Uddin MN (2014) IEEE Trans Ind Appl 50:2349–2358

    Article  Google Scholar 

  45. Rizzo SA, Scelba G (2015) Appl Energy 145:124–132

    Article  Google Scholar 

  46. Kofinas P, Dounis AI, Papadakis G, Assimakopoulos MN (2015) Energy Build 90:51–64

    Article  Google Scholar 

  47. Khanaki R, Radzi MAM, Marhaban MH (2013) In: IEEE conference on clean energy and technology (CEAT 2013), pp 287–292

    Google Scholar 

  48. Messalti S, Harrag AG, Loukriz AE (2015) In: 6th international renewable energy congress (IREC 2015), pp 1–6

    Google Scholar 

  49. Shi J, Zhang W, Zhang Y, Xue F, Yang T (2015) Electr Power Syst Res 123:100–107

    Article  Google Scholar 

  50. Mirhassani SM, Golroodbari SZM, Mekhilef S (2015) Int J Electr Power Energy Syst 64:761–770

    Article  Google Scholar 

  51. Liu Y, Huang S, Huang J, Liang W (2012) IEEE Trans Energy Convers 27:1027–1035

    Article  Google Scholar 

  52. Lian KL, Jhang JH, Tian IS (2014) IEEE J Photovoltaics 4:626–633

    Article  Google Scholar 

  53. Ishaque K, Salam Z (2013) IEEE Trans Industr Electron 60:3195–3206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersan Kabalci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kabalci, E. (2017). Maximum Power Point Tracking (MPPT) Algorithms for Photovoltaic Systems. In: Bizon, N., Mahdavi Tabatabaei, N., Blaabjerg, F., Kurt, E. (eds) Energy Harvesting and Energy Efficiency. Lecture Notes in Energy, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-49875-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49875-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49874-4

  • Online ISBN: 978-3-319-49875-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics