Skip to main content

The Antiviral Activity of Probiotic Metabolites

  • Chapter
  • First Online:
New Insights on Antiviral Probiotics

Abstract

One of the most important characteristics of lactic acid bacteria (LAB) is the production of a large variety of active substances, such as acids, active ribosomal proteins, non-ribosomal peptide synthetase (NRPS), hydrogen peroxide, and other metabolites. In recent decades, several studies have evaluated the importance of these active substances in both the medical and food sectors. LAB have been used for several years in food fermentation to give good taste and protect the food against spoilage and pathogenic microorganisms. In this chapter, we focus on the antiviral activity of LAB metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CA16:

Coxsackievirus A 16

CFS:

Cell-free supernatant

CRFK:

Crandell–Reese feline kidney

EMCV:

Murine encephalomyocarditis virus

FCV:

Feline calicivirus

FDA:

Food and Drug Administration

GRAS:

Generally recognized as safe

H2O2 :

Hydrogen peroxide

HSV-1:

Herpes simplex viruses 1

HSV-2:

Herpes simplex viruses 2

kDa:

Kilodalton

LAB:

Lactic acid bacteria

LabyA1:

Labyrinthopeptin A1

lcFOS:

Long-chain fructooligosaccharides

NRPs:

Non-ribosomal peptides

NRPS:

Non-ribosomal peptide synthetase

PEDV:

Porcine epidemic diarrhea virus

scGOS:

Short-chain galactooligosaccharides

SFV:

Semliki Forest virus

SHV-1:

Suid herpesvirus

SIV:

Simian immunodeficiency virus

VSV:

Vesicular stomatitis virus

References

  1. Pericone CD, Park S, Imlay JA, Weiser JN. Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the fenton reaction. J Bacteriol. 2003;185:6815–25. doi:10.1128/JB.185.23.6815-6825.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seki M, Iida K, Saito M, Nakayama H, Yoshida S. Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate. J Bacteriol. 2004;186:2046–51. doi:10.1128/JB.186.7.2046-2051.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kawasaki S, Satoh T, Todoroki M, Niimura Y. b-type dihydroorotate dehydrogenase is purified as a H2O2-forming NADH oxidase from Bifidobacterium bifidum. Appl Environ Microbiol. 2009;75:629–36. doi:10.1128/AEM.02111-08.

    Article  CAS  PubMed  Google Scholar 

  4. Klebanoff SJ, Coombs RW. Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: possible role in heterosexual transmission. J Exp Med. 1991;174:289–92.

    Article  CAS  PubMed  Google Scholar 

  5. Conti C, Malacrino C, Mastromarino P. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J Physiol Pharmacol Off J Pol Physiol Soc. 2009;60(Suppl 6):19–26.

    Google Scholar 

  6. In Y-W, Kim J-J, Kim H-J, Oh S-W. Antimicrobial activities of acetic acid, citric acid and lactic acid against Shigella species. J Food Saf. 2013;33:79–85. doi:10.1111/jfs.12025.

    Article  Google Scholar 

  7. Boskey ER, Telsch KM, Whaley KJ, Moench TR, Cone RA. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect Immun. 1999;67:5170–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Martín V, Maldonado A, Fernández L, Rodríguez JM, Connor RI. Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk. Breastfeed Med Off J Acad Breastfeed Med. 2010;5:153–8. doi:10.1089/bfm.2010.0001.

    Article  Google Scholar 

  9. Tuyama ACG, Cheshenko N, Carlucci MJ, Li J-H, Goldberg CL, Waller DP, et al. ACIDFORM inactivates herpes simplex virus and prevents genital herpes in a mouse model: optimal candidate for microbicide combinations. J Infect Dis. 2006;194:795–803. doi:10.1086/506948.

    Article  PubMed  Google Scholar 

  10. Mastromarino P, Hemalatha R, Barbonetti A, Cinque B, Cifone MG, Tammaro F, et al. Biological control of vaginosis to improve reproductive health. Indian J Med Res. 2014;140:S91–7.

    PubMed  PubMed Central  Google Scholar 

  11. Hill JA, Anderson DJ. Human vaginal leukocytes and the effects of vaginal fluid on lymphocyte and macrophage defense functions. Am J Obstet Gynecol. 1992;166:720–6.

    Article  CAS  PubMed  Google Scholar 

  12. Straube J, Albert T, Manteufel J, Heinze J, Fehlhaber K, Truyen U. In vitro influence of D/L-lactic acid, sodium chloride and sodium nitrite on the infectivity of feline calicivirus and of ECHO virus as potential surrogates for foodborne viruses. Int J Food Microbiol. 2011;151:93–7. doi:10.1016/j.ijfoodmicro.2011.08.010.

    Article  CAS  PubMed  Google Scholar 

  13. Kwon H-J, Kim H-H, Ryu YB, Kim JH, Jeong HJ, Lee S-W, et al. In vitro anti-rotavirus activity of polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorg Med Chem. 2010;18:7668–74. doi:10.1016/j.bmc.2010.07.073.

    Article  CAS  PubMed  Google Scholar 

  14. Clark KJ, Grant PG, Sarr AB, Belakere JR, Swaggerty CL, Phillips TD, et al. An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Vet Microbiol. 1998;63:147–57.

    Article  CAS  PubMed  Google Scholar 

  15. van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res. 2001;52:225–39.

    Article  PubMed  Google Scholar 

  16. Superti F, Ammendolia MG, Valenti P, Seganti L. Antirotaviral activity of milk proteins: lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med Microbiol Immunol (Berl). 1997;186:83–91.

    Article  CAS  Google Scholar 

  17. Inagaki M, Muranishi H, Yamada K, Kakehi K, Uchida K, Suzuki T, et al. Bovine κ-casein inhibits human rotavirus (HRV) infection via direct binding of glycans to HRV. J Dairy Sci. 2014;97:2653–61. doi:10.3168/jds.2013-7792.

    Article  CAS  PubMed  Google Scholar 

  18. Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976;40:722–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Line JE, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, et al. Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2008;52:1094–100. doi:10.1128/AAC.01569-06.

    Article  CAS  PubMed  Google Scholar 

  20. Stern NJ, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, et al. Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemother. 2006;50:3111–6. doi:10.1128/AAC.00259-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Borzenkov VN, et al. Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. J Agric Food Chem. 2008;56:1942–8. doi:10.1021/jf073284g.

    Article  CAS  PubMed  Google Scholar 

  22. Messaoudi S, Kergourlay G, Rossero A, Ferchichi M, Prévost H, Drider D, et al. Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. Int Microbiol Off J Span Soc Microbiol. 2011;14:103–10. doi:10.2436/20.1501.01.140.

    CAS  Google Scholar 

  23. Messaoudi S, Kergourlay G, Dalgalarrondo M, Choiset Y, Ferchichi M, Prévost H, et al. Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51. Food Microbiol. 2012;32:129–34. doi:10.1016/j.fm.2012.05.002.

    Article  CAS  PubMed  Google Scholar 

  24. Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12:39–85.

    Article  CAS  PubMed  Google Scholar 

  25. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–88. doi:10.1038/nrmicro1273.

    Article  CAS  PubMed  Google Scholar 

  26. Rea MC, Ross RP, Cotter PD, Hill C. Classification of bacteriocins from gram-positive bacteria. In: Drider D, Rebuffat S, editors. Prokaryotic Antimicrob. Pept. New York: Springer; 2011. p. 29–53.

    Google Scholar 

  27. O’Shea EF, Gardiner GE, O’Connor PM, Mills S, Ross RP, Hill C. Characterization of enterocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract. FEMS Microbiol Lett. 2009;291:24–34. doi:10.1111/j.1574-6968.2008.01427.x.

    Article  PubMed  Google Scholar 

  28. Naghmouchi K, Baah J, Hober D, Jouy E, Rubrecht C, Sané F, et al. Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob Agents Chemother. 2013;57:2719–25. doi:10.1128/AAC.02328-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Naghmouchi K, Le Lay C, Baah J, Drider D. Antibiotic and antimicrobial peptide combinations: synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Res Microbiol. 2012;163:101–8. doi:10.1016/j.resmic.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  30. Lange-Starke A, Petereit A, Truyen U, Braun PG, Fehlhaber K, Albert T. Antiviral potential of selected starter cultures, bacteriocins and D,L-lactic acid. Food Environ Virol. 2014;6:42–7. doi:10.1007/s12560-013-9135-z.

    Article  CAS  PubMed  Google Scholar 

  31. Mastromarino P, Cacciotti F, Masci A, Mosca L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: role of cell wall associated components. Anaerobe. 2011;17:334–6. doi:10.1016/j.anaerobe.2011.04.022.

    Article  PubMed  Google Scholar 

  32. Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biol J Int Assoc Biol Stand. 1997;25:289–97. doi:10.1006/biol.1997.0099.

    CAS  Google Scholar 

  33. Qureshi H, Saeed S, Ahmed S, Rasool SA. Coliphage hsa as a model for antiviral studies/spectrum by some indigenous bacteriocin like inhibitory substances (BLIS). Pak J Pharm Sci. 2006;19:182–5.

    PubMed  Google Scholar 

  34. Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LMT, et al. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol. 2010;27:869–79. doi:10.1016/j.fm.2010.05.001.

    Article  CAS  PubMed  Google Scholar 

  35. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT. An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int J Antimicrob Agents. 2005;25:508–13. doi:10.1016/j.ijantimicag.2005.02.005.

    Article  CAS  PubMed  Google Scholar 

  36. Wachsman MB, Castilla V, de Ruiz Holgado AP, de Torres RA, Sesma F, Coto CE. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res. 2003;58:17–24.

    Article  CAS  PubMed  Google Scholar 

  37. Torres NI, Noll KS, Xu S, Li J, Huang Q, Sinko PJ, et al. Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob Proteins. 2013;5:26–35. doi:10.1007/s12602-012-9123-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al Kassaa I, Hober D, Hamze M, Chihib NE, Drider D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins. 2014;6:177–85. doi:10.1007/s12602-014-9162-6.

    Article  CAS  PubMed  Google Scholar 

  39. Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, et al. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One. 2013;8:e64010. doi:10.1371/journal.pone.0064010.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chenoll E, Casinos B, Bataller E, Buesa J, Ramón D, Genovés S, et al. Identification of a Peptide Produced by Bifidobacterium longum CECT 7210 with Antirotaviral Activity. Front Microbiol. 2016;7:655. doi:10.3389/fmicb.2016.00655.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Olaya Galán NN, Ulloa Rubiano JC, Velez Reyes FA, Fernandez Duarte KP, Salas Cárdenas SP, Gutierrez Fernandez MF. In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP4 protein production. J Appl Microbiol. 2016;120:1041–51. doi:10.1111/jam.13069.

    Article  PubMed  Google Scholar 

  42. Álvarez B, Krogh-Andersen K, Tellgren-Roth C, Martínez N, Günaydın G, Lin Y, et al. An Exopolysaccharide-deficient mutant of Lactobacillus rhamnosus GG dfficiently displays a protective llama antibody fragment against rotavirus on its surface. Appl Environ Microbiol. 2015;81:5784–93. doi:10.1128/AEM.00945-15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Prahoveanu E, Eşanu V, Cajal N, Veidenfeld-Stein R, Brinduşă-Diaconescu E. Effect of several unpurified milk preparations on experimental influenza infection in mice. Virologie. 1986;37:49–53.

    CAS  PubMed  Google Scholar 

  44. Botić T, Klingberg TD, Weingartl H, Cencic A. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int J Food Microbiol. 2007;115:227–34. doi:10.1016/j.ijfoodmicro.2006.10.044.

    Article  PubMed  Google Scholar 

  45. Choi H-J, Song J-H, Ahn Y-J, Baek S-H, Kwon D-H. Antiviral activities of cell-free supernatants of yogurts metabolites against some RNA viruses. Eur Food Res Technol. 2009;228:945–50. doi:10.1007/s00217-009-1009-0.

    Article  CAS  Google Scholar 

  46. Aboubakr HA, El-Banna AA, Youssef MM, Al-Sohaimy SAA, Goyal SM. Antiviral effects of Lactococcus lactis on feline calicivirus, a human norovirus surrogate. Food Environ Virol. 2014;6(4):282–9. doi:10.1007/s12560-014-9164-2.

    Article  PubMed  Google Scholar 

  47. Shearer AEH, Hoover DG, Kniel KE. Effect of bacterial cell-free supernatants on infectivity of norovirus surrogates. J Food Prot. 2014;77:145–9. doi:10.4315/0362-028X.JFP-13-204.

    Article  PubMed  Google Scholar 

  48. Saeed S, Anusha R, Ahmad S, Zaidi S, Rehmani S. A purified bacteriocin like inhibitory substance isolated from staphylococcus aureus AB188. Res J microbiol. 2007;2:796–806.

    Article  CAS  Google Scholar 

  49. Wachsman MB, Farías ME, Takeda E, Sesma F, de Ruiz Holgado AP, de Torres RA, et al. Antiviral activity of enterocin CRL35 against herpesviruses. Int J Antimicrob Agents. 1999;12:293–9.

    Article  CAS  PubMed  Google Scholar 

  50. Salvucci E, Saavedra L, Sesma F. Short peptides derived from the NH2-terminus of subclass IIa bacteriocin enterocin CRL35 show antimicrobial activity. J Antimicrob Chemother. 2007;59:1102–8. doi:10.1093/jac/dkm096.

    Article  CAS  PubMed  Google Scholar 

  51. Walsh CT. The chemical versatility of natural-product assembly lines. Acc Chem Res. 2008;41:4–10. doi:10.1021/ar7000414.

    Article  CAS  PubMed  Google Scholar 

  52. Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol. 2004;58:453–88. doi:10.1146/annurev.micro.58.030603.123615.

    Article  CAS  PubMed  Google Scholar 

  53. Grandy G, Medina M, Soria R, Terán CG, Araya M. Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect Dis. 2010;10:253. doi:10.1186/1471-2334-10-253.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lee DK, Park JE, Kim MJ, Seo JG, Lee JH, Ha NJ. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin Res Hepatol Gastroenterol. 2015;39:237–44. doi:10.1016/j.clinre.2014.09.006.

    Article  PubMed  Google Scholar 

  55. Kotzampassi K, Giamarellos-Bourboulis EJ. Probiotics for infectious diseases: more drugs, less dietary supplementation. Int J Antimicrob Agents. 2012;40:288–96. doi:10.1016/j.ijantimicag.2012.06.006.

    Article  CAS  PubMed  Google Scholar 

  56. Desselberger U. Review: Rotaviruses. Virus Res. 2014;190:75–96. doi:10.1016/j.virusres.2014.06.016.

    Article  CAS  PubMed  Google Scholar 

  57. Garaicoechea L, Olichon A, Marcoppido G, Wigdorovitz A, Mozgovoj M, Saif L, et al. Llama-derived single-chain antibody fragments directed to rotavirus VP6 protein possess broad neutralizing activity in vitro and confer protection against diarrhea in mice. J Virol. 2008;82:9753–64. doi:10.1128/JVI.00436-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van der Vaart JM, Pant N, Wolvers D, Bezemer S, Hermans PW, Bellamy K, et al. Reduction in morbidity of rotavirus induced diarrhoea in mice by yeast produced monovalent llama-derived antibody fragments. Vaccine. 2006;24:4130–7. doi:10.1016/j.vaccine.2006.02.045.

    Article  PubMed  Google Scholar 

  59. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–8. doi:10.1038/363446a0.

    Article  CAS  PubMed  Google Scholar 

  60. Aoki-Yoshida A, Saito S, Fukiya S, Aoki R, Takayama Y, Suzuki C, et al. Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo. Benef Microbes. 2016;7:421–9. doi:10.3920/BM2015.0169.

    Article  CAS  PubMed  Google Scholar 

  61. Hagbom M, Sharma S, Lundgren O, Svensson L. Towards a human rotavirus disease model. Curr Opin Virol. 2012;2:408–18. doi:10.1016/j.coviro.2012.05.006.

    Article  CAS  PubMed  Google Scholar 

  62. Liu F, Li G, Wen K, Bui T, Cao D, Zhang Y, et al. Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol. 2010;23:135–49. doi:10.1089/vim.2009.0088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mao X, Gu C, Hu H, Tang J, Chen D, Yu B, et al. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus. PLoS One. 2016;11:e0146312. doi:10.1371/journal.pone.0146312.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Szajewska H, Wanke M, Patro B. Meta-analysis: the effects of Lactobacillus rhamnosus GG supplementation for the prevention of healthcare-associated diarrhoea in children. Aliment Pharmacol Ther. 2011;34:1079–87. doi:10.1111/j.1365-2036.2011.04837.x.

    Article  CAS  PubMed  Google Scholar 

  65. Rodger SM, Schnagl RD, Holmes IH. Further biochemical characterization, including the detection of surface glycoproteins, of human, calf, and simian rotaviruses. J Virol. 1977;24:91–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rigo-Adrover M, Saldaña-Ruíz S, van Limpt K, Knipping K, Garssen J, Knol J, et al. A combination of scGOS/lcFOS with Bifidobacterium breve. Eur J Nutr 2016:1–14. doi:10.1007/s00394-016-1213-1.

  67. Liévin-Le Moal V, Servin AL. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev. 2014;27:167–99. doi:10.1128/CMR.00080-13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

AL KASSAA, I. (2017). The Antiviral Activity of Probiotic Metabolites. In: New Insights on Antiviral Probiotics. Springer, Cham. https://doi.org/10.1007/978-3-319-49688-7_4

Download citation

Publish with us

Policies and ethics