Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 626 Accesses

Abstract

Characterization of entanglement in composite quantum systems is a difficult task. Already in the bipartite case, it was proven to be NP-hard [Gur03] (Gurvits, Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03, 2003). However, as we have already seen in Sect. 2.1.2, there exist several criteria which give sufficient conditions to certify that a state is entangled, of which the most celebrated one is the Positive under Partial Transposition (PPT) criterion. Nevertheless, the characterization of states which are both PPT and entangled remains elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For instance, the full characterization of separability is possible if one only considers states which commute with the multilateral action of unitary [CK06a, EW01] or orthogonal [CK06b, VW01] groups.

  2. 2.

    Since, for any observable M, one has \(\mathrm {Tr}[M\rho _{\overline{S}}]=\mathrm {Tr}[(\mathbbm {1}_S\otimes M)\rho _{\mathbf {A}}]\), by taking \(M=| \phi \rangle \!\langle \phi |\), with \(| \phi \rangle \in \ker \rho _{\overline{S}}\), the following identity holds: \(0=\langle \phi |\rho _{\overline{S}}| \phi \rangle =\mathrm {Tr}[| \phi \rangle \!\langle \phi |\rho _{\overline{S}}]=\mathrm {Tr}[(\mathbbm {1}_S\otimes | \phi \rangle \!\langle \phi |)\rho _{\mathbf {A}}]=\sum _{i}\mathrm {Tr}[| i \rangle \!\langle i |\otimes | \phi \rangle \!\langle \phi |\rho _{\mathbf {A}}]\). Hence, \(\sum _i \langle i |\langle \phi |\rho _{\mathbf {A}}| i \rangle | \phi \rangle =0\) and, because \(\rho _{\mathbf {A}}\succeq 0\), every summand has to be zero. Hence, \(| i \rangle | \phi \rangle \in \ker \rho _{\mathbf {A}}\) for every \(| i \rangle \). By linearity, \(| \psi \rangle | \phi \rangle \in \ker \rho _{\mathbf {A}}\) for any \(| \psi \rangle \in \mathcal{H}_\mathcal{S}\).

  3. 3.

    A fact that is easily seen when expressing the vectors in the Dicke states basis defined in Eq. (2.27), where the identity \(P_{\mathbf {A}}(| D_{|S|}^k \rangle | D_{|\overline{S}|}^{l} \rangle )=| D_n^{k+l} \rangle \) holds.

  4. 4.

    A generic property in mathematics is one that holds for typical examples. From the point of view of measure theory, a generic property is one that holds almost everywhere, or with probability 1. Topologically, or from the point of view of algebraic geometry, a generic property holds on a dense open set. Equivalently, it does not hold in a nowhere dense set (a set whose closure has empty interior).

  5. 5.

    This assumption is crucial; otherwise we could not discard that all the m roots that are close to infinity for small r go to the unspecified roots for large r and that the n roots that are close to zero for large r go to the unspecified roots for small r, thus never crossing the unit circle.

  6. 6.

    For finite-dimensional spaces, since \(\mathcal{H}^*\otimes \mathcal{K}\cong {\hom }(\mathcal{H}, \mathcal{K})\), where \(\mathcal{H}^*\) is the dual space of \(\mathcal{H}\); that implies we can arrange the coefficients of \(| \Phi \rangle \) in a \((k+1)\times (k+1)\) matrix.

  7. 7.

    It suffices to take n different values of \(\alpha \), denoted \(\alpha _i\), because the determinant of a \(n\times n\) Vandermonde matrix is \(\prod _{1\le i < j \le n}(\alpha _i-\alpha _j)\).

  8. 8.

    It is sufficient to check the sign of the minimal eigenvalue of a O(n) number of matrices that have size \(O(n^2)\), where n is the number of qubits, as we shall see in Remark 3.26.

  9. 9.

    The correction \(\mathrm {Tr} h\) is added just to impose \(\mathrm Tr \rho (x)=1\) for all x.

  10. 10.

    Here we use the identity \(A\otimes B \mathrm {vec(X)} = \mathrm {vec}(A X B^T)\), where the vectorization operator acts as \(\mathrm {vec}| a \rangle \langle b | = | a \rangle | b \rangle \) and it is extended by linearity. The partial transposition acts just as a permutation of the components of h.

  11. 11.

    The case of four qubits was studied in detail in [Aug+10].

  12. 12.

    Because \(\mathcal{D}^{\mathrm {PPT}}\) arises as the intersection of \(\mathcal{D}^{PPT, S}\) for all the considered bipartitions \(S|\overline{S}\) of \(\mathbf {A}\), \(x_*\) corresponds to the smallest x such that the one of the eigenvalues of \(\rho _{\mathbf {A}}^{T_{S}}\) changes its sign for the first bipartition \(S|\overline{S}\) that this sign change happens.

References

  1. R. Augusiak, J. Grabowski, M. Kuś, M. Lewenstein, Searching for extremal PPT entangled states, in Optics Communications, 283(5), 805–813 (2010). Quo vadis Quantum Optics? ISSN: 0030-4018, doi:10.1016/j.optcom.2009.10.050, (see pp. 53, 75, 76, 78)

  2. R. Augusiak, J. Tura, J. Samsonowicz, M. Lewenstein, Entangled symmetric states of N qubits with all positive partial transpositions. Phys. Rev. A, 86(4), 042316 (2012). doi:10.1103/PhysRevA.86.042316, (see pp. 54, 78, 79, 94)

  3. D. Chruściński, A. Kossakowski, Multipartite invariant states. I. Unitary symmetry. Phys. Rev. A, 73(6), 062314 (2006). doi:10.1103/PhysRevA.73.062314, (see p. 53)

  4. D. Chruściński, A. Kossakowski, Multipartite invariant states. II. Orthogonal symmetry. Phys. Rev. A, 73(6), 062315 (2006). doi:10.1103/PhysRevA.73.062315, (see p. 53)

  5. T. Cubitt, A. Montanaro, A. Winter, On the dimension of subspaces with bounded Schmidt rank. J. Math. Phys. 49(2), 022107 (2008). doi:10.1063/1.2862998, (see p. 68)

  6. K. Eckert, J. Schliemann, D. Bruss, M. Lewenstein, Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299(1), 88-127 (2002). ISSN: 0003-4916, doi:10.1006/aphy.2002.6268, (see pp. 55, 58, 67, 94)

  7. T. Eggeling, R.F. Werner, Separability properties of tripartite states with \(U \bigotimes U \bigotimes U\) symmetry. Phys. Rev. A, 63(4), 042111 (2001). doi:10.1103/PhysRevA.63.042111, (see p. 53)

  8. L. Gurvits, Classical deterministic complexity of edmonds’ problem and quantum entanglement, in Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03 (ACM, San Diego, CA, USA, 2003), pp. 10–19. ISBN: 1-58113-674-9, doi:10.1145/780542.780545, (see pp. 53, 74)

  9. M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A, 223(1–2), 1–8 (1996). ISSN: 0375-9601, doi:10.1016/S0375-9601(96)00706-2, (see p. 67)

  10. P. Horodecki, M. Lewenstein, G. Vidal, I. Cirac, Operational criterion and constructive checks for the separability of low-rank density matrices. Phys. Rev. A, 62(3), 032310 (2000). doi:10.1103/PhysRevA.62.032310, (see pp. 59, 93)

  11. P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A, 232(5), 333–339 (1997). ISSN: 0375-9601, doi:10.1016/S0375-9601(97)00416-7, (see pp. 62, 84-87)

  12. S. Karnas, M. Lewenstein, Separability and entanglement in \({\mathbb{C}}^2 \bigotimes {\mathbb{C}}^2 \bigotimes {\mathbb{C}}^n\) composite quantum systems. Phys. Rev. A 64(4), 042313 (2001). doi:10.1103/PhysRevA.64.042313, (see p. 62)

  13. B. Kraus, J.I. Cirac, S. Karnas, M. Lewenstein, Separability in \(2 \times N\) composite quantum systems. Phys. Rev. A 61(6), 062302 (2000). doi:10.1103/PhysRevA.61.062302, (see pp. 58–60, 63, 64, 72)

  14. M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Optimization of entanglement witnesses. Phys. Rev. A 62(5), 052310 (2000). doi:10.1103/PhysRevA.62.052310, (see p. 62)

  15. J.M. Leinaas, J. Myrheim, E. Ovrum, Extreme points of the set of density matrices with positive partial transpose. Phys. Rev. A 76(3), 034304 (2007). doi:10.1103/PhysRevA.76.034304, (see pp. 53, 75, 78)

  16. J.M. Leinaas, J. Myrheim, P. Øyvind, Sollid numerical studies of entangled positive-partial-transpose states in composite quantum systems. Phys. Rev. A 81(6), 062329 (2010). doi:10.1103/PhysRevA.81.062329, (see p. 82)

  17. M. Lewenstein, A. Sanpera, Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80(11), 2261–2264 (1998). doi:10.1103/PhysRevLett.80.2261, (see p. 62)

  18. J. Samsonowicz, M. Kuś, M. Lewenstein, Separability, entanglement, and full families of commuting normal matrices. Phys. Rev. A 76(2), 022314 (2007). doi:10.1103/PhysRevA.76.022314, (see pp. 63, 72, 73, 90)

  19. E. Størmer, Positive linear maps of operator algebras. Acta Math. 110, 233–278 (1963). ISSN: 0001-5962, doi:10.1007/BF02391860, (see p. 67)

  20. G. Tóth, O. Gühne, Entanglement and permutational symmetry. Phys. Rev. Lett. 102(17), 170503 (2009). doi:10.1103/PhysRevLett.102.170503, (see p. 67)

  21. J. Tura, R. Augusiak, P. Hyllus, M. Kuś, J. Samsonowicz, M. Lewenstein, Four-qubit entangled symmetric states with positive partial transpositions. Phys. Rev. A 85(6), 060302 (2012). doi:10.1103/PhysRevA.85.060302, Published as a Rapid Communication (see pp. 53, 54, 67, 78)

  22. T. Vértesi, N. Brunner, Quantum nonlocality does not imply entanglement distillability. Phys. Rev. Lett. 108(3), 030403 (2012). doi:10.1103/PhysRevLett.108.030403, (see p. 53)

  23. K.G.H. Vollbrecht, R.F. Werner, Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001). doi:10.1103/PhysRevA.64.062307, (see p. 53)

  24. S.L. Woronowicz, Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10(2), 165–183 (1976). ISSN: 0034-4877. doi:10.1016/0034-4877(76)90038-0, (see p. 67)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tura i Brugués, J. (2017). PPT Entangled Symmetric States. In: Characterizing Entanglement and Quantum Correlations Constrained by Symmetry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-49571-2_3

Download citation

Publish with us

Policies and ethics