Skip to main content

Role of Aquaporins in the Maintenance of Xylem Hydraulic Capacity

  • Chapter
  • First Online:
Plant Aquaporins

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Terrestrial plants’ well-being depends upon an uninterrupted supply of water from roots to leaves. Water stress or high transpirational demand results in an increase of water tension in the xylem, followed by an increased likelihood of embolism formation and reduction of xylem capacity to conduct water. The prolonged presence of xylem hydraulic dysfunction caused by embolism can have dramatic short- and long-term effects on plant function including the decrease of photosynthetic capacity, reduced vitality, or plant death. As the presence of embolisms is a negative trait, plants have evolved several strategies to prevent and/or mitigate the effects of hydraulic failure and restore xylem transport capacity. Recovery process requires a set of physiological activities that promote water flow into embolized conduits to restore its transport function. As hydraulic repair necessitates movement of water across xylem parenchyma cell membranes, an understanding of xylem-specific aquaporin expression patterns, their localization and activity are essential for the development of biological models describing embolism recovery process in woody plants. In this chapter, we provide an overview of aquaporin distributions and activity during development of drought stress, formation of embolism, and subsequent recovery from stress that result in restoration of xylem hydraulic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  CAS  PubMed  Google Scholar 

  • Almeida-Rodriguez AM, Hacke UG (2012) Cellular localization of aquaporin mRNA in hybrid poplar stems. Am J Bot 99(7):1249–1254. doi:10.3732/ajb.1200088

    Article  CAS  PubMed  Google Scholar 

  • Baiges I, Schaffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115(2):175–182. doi:10.1034/j.1399-3054.2002.1150201.x

    Article  CAS  PubMed  Google Scholar 

  • Barigah TS, Charrier O, Douris M, Bonhomme M, Herbette S, Ameglio T, Fichot R, Brignolas F, Cochard H (2013) Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann Bot 112(7):1431–1437. doi:10.1093/aob/mct204

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrieu F, Chaumont F, Chrispeels MJ (1998) High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol 117(4):1153–1163. doi:10.1104/pp.117.4.1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrowclough DE, Peterson CA, Steudle E (2000) Radial hydraulic conductivity along developing onion roots. J Exp Bot 51(344):547–557. doi:10.1093/jexbot/51.344.547

    Article  CAS  PubMed  Google Scholar 

  • Beckman CH, Talboys PW (1981) Anatomy of resistance. In: Mace ME, Bell AA, Beckman CH (eds) Fungal wilt diseases of plants. Academic, New York, pp 487–521

    Chapter  Google Scholar 

  • Brenner CE (1995) Cavitation and bubble dynamics, Oxford Engineering Science Series, vol 44. Oxford University Press, Oxford

    Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA (2010) The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154(3):1088–1095. doi:10.1104/pp.110.162396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Jordan GJ (2008) Internal coordination between hydraulics and stomatal control in leaves. Plant Cell Environ 31(11):1557–1564. doi:10.1111/j.1365-3040.2008.01865.x

    Article  PubMed  Google Scholar 

  • Chapotin SM, Razanameharizaka JH, Holbrook NM (2006) Abiomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae). Am J Bot 93(9):1251–1264. doi:10.3732/ajb.93.9.1251

    Article  PubMed  Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164(4):1600–1618. doi:10.1104/pp.113.233791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitarra W, Balestrini R, Vitali M, Pagliarani C, Perrone I, Schubert A, Lovisolo C (2014) Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. Planta 239(4):887–899. doi:10.1007/s00425-013-2017-7

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752–755. doi:10.1038/nature11688

    CAS  PubMed  Google Scholar 

  • Clearwater M, Goldstein G (2005) Embolism repair and long distance transport. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier, Amsterdam, pp 201–220

    Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus vessel sizes, tyloses, cavitation and seasonal-changes in embolism. Tree Physiol 6(4):393–407

    Article  CAS  PubMed  Google Scholar 

  • Cui XH, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121(2):207–214. doi:10.1007/s10265-007-0130-z

    Article  CAS  PubMed  Google Scholar 

  • Da Ines O, Graf W, Franck KI, Albert A, Winkler JB, Scherb H, Stichler W, Schaffner AR (2010) Kinetic analyses of plant water relocation using deuterium as tracer – reduced water flux of Arabidopsis pip2 aquaporin knockout mutants. Plant Biol 12:129–139. doi:10.1111/j.1438-8677.2010.00385.x

    Article  CAS  PubMed  Google Scholar 

  • Davison EM, Tay FCS (1985) The effect of waterlogging on seedlings of Eucalyptus marginata. New Phytol 101(4):743–753. doi:10.1111/j.1469-8137.1985.tb02879.x

    Article  Google Scholar 

  • Diamond HL, Jones HR, Swatzell LJ (2012) The role of aquaporins in water balance in Cheilanthes lanosa (Adiantaceae) gametophytes. Am Fern J 102(1):11–31

    Article  Google Scholar 

  • Earles JM, Sperling O, Silva LC, McElrone A, Brodersen C, North M, Zwieniecki M (2015) Bark water uptake promotes localized hydraulic recovery in coastal redwood crown. Plant Cell Environ. doi:10.1111/pce.12612

    Google Scholar 

  • Fraysse LC, Wells B, McCann MC, Kjellbom P (2005) Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells. Biol Cell 97(7):519–534

    Article  CAS  PubMed  Google Scholar 

  • Fromard L, Babin V, Fleuratlessard P, Fromont JC, Serrano R, Bonnemain JL (1995) Control of vascular sap pH by the vessel-associated cells in woody species – physiological and immunological studies. Plant Physiol 108(3):913–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galmes J, Pou A, Alsina MM, Tomas M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226(3):671–681. doi:10.1007/s00425-007-0515-1

    Article  CAS  PubMed  Google Scholar 

  • Gambetta GA, Fei J, Rost TL, Knipfer T, Matthews MA, Shackel KA, Walker MA, McElrone AJ (2013) Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiol 163(3):1254–1265. doi:10.1104/pp.113.221283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol 62(1–2):305–323. doi:10.1007/s11103-006-9022-1

    Article  CAS  PubMed  Google Scholar 

  • Hachez C, Heinen RB, Draye X, Chaumont F (2008) The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation. Plant Mol Biol 68(4–5):337–353. doi:10.1007/s11103-008-9373-x

    Article  CAS  PubMed  Google Scholar 

  • Hachez C, Veselov D, Ye Q, Reinhardt H, Knipfer T, Fricke W, Chaumont F (2012) Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant Cell Environ 35(1):185–198. doi:10.1111/j.1365-3040.2011.02429.x

    Article  CAS  PubMed  Google Scholar 

  • Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA (2001) Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol 125(2):779–786. doi:10.1104/pp.125.2.779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbrook NM, Zwieniecki MA (1999) Embolism repair and xylem tension: do we need a miracle? Plant Physiol 120(1):7–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol 126(1):27–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang HS (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54(5):713–725. doi:10.1023/B:PLAN.0000040900.61345.a6

    Article  CAS  PubMed  Google Scholar 

  • Jensen KH, Berg-Sørensen K, Bruus H, Holbrook NM, Liesche J, Schulz A, Zwieniecki MA, Bohr T (2016) Sap flow and sugar transport in plants. Reviews of modern physics (in press)

    Google Scholar 

  • Johnson DM, Meinzer FC, Woodruff DR, McCulloh KA (2009) Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ 32(7):828–836. doi:10.1111/j.1365-3040.2009.01961.x

    Article  PubMed  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Flexas J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31(5):658–666. doi:10.1111/j.1365-3040.2008.01792.x

    Article  CAS  PubMed  Google Scholar 

  • Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123(1):111–124. doi:10.1104/pp.123.1.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laur J, Hacke UG (2014a) Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol 203(2):388–400. doi:10.1111/nph.12806

    Article  CAS  PubMed  Google Scholar 

  • Laur J, Hacke UG (2014b) The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. PLoS One 9(11):e111751. doi:10.1371/journal.pone.0111751

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebon G, Duchene E, Brun O, Clement C (2005) Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) cuttings and vines. Ann Bot 95(6):943–948. doi:10.1093/aob/mci108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clement C (2008) Sugars and flowering in the grapevine (Vitis vinifera L.). J Exp Bot 59(10):2565–2578. doi:10.1093/jxb/ern135

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang GX, Xin M, Yang HM, Wu XJ, Li T (2004) The parameters of guard cell calcium oscillation encodes stomatal oscillation and closure in Vicia faba. Plant Sci 166(2):415–421. doi:10.1016/j.plantsci.2003.10.008

    Article  CAS  Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45(4):481–489. doi:10.1093/pcp/pch058

    Article  CAS  PubMed  Google Scholar 

  • Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161(3):449–459. doi:10.1007/s00442-009-1400-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovisolo C, Schubert A (2006) Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach. New Phytol 172(3):469–478. doi:10.1111/j.1469-8137.2006.01852.x

    Article  CAS  PubMed  Google Scholar 

  • Mahdieh M, Mostajeran A, Horie T, Katsuhara M (2008) Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol 49(5):801–813. doi:10.1093/pcp/pcn054

    Article  CAS  PubMed  Google Scholar 

  • Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002) Plasma membrane Aquaporins play a significant role during recovery from water deficit. Plant Physiol 130(4):2101–2110. doi:10.1104/pp.009019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the alpine timberline. Physiol Plant 115(1):74–80. doi:10.1034/j.1399-3054.2002.1150108.x

    Article  CAS  PubMed  Google Scholar 

  • Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006) Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology 87(12):3175–3185. doi:10.1890/0012-9658(2006)87[3175:fdicat]2.0.co;2

    Article  PubMed  Google Scholar 

  • Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Damon B, Hacke UG (2014) Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol 164(4):1731–1740. doi:10.1104/pp.114.236646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S (2011) Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci 180:604–611

    Article  CAS  PubMed  Google Scholar 

  • Otto B, Kaldenhoff R (2000) Cell-specific expression of the mercury insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211:167–172

    Article  CAS  PubMed  Google Scholar 

  • Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini R, Kaldenhoff R, Uehlein N, Gribaudo I, Schubert A, Lovisolo C (2012a) The grapevine root-specific aquaporin VvPIP2;4 N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. Plant Physiol 160(2):965–977. doi:10.1104/pp.112.203455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone I, Pagliarini C, Lovisolo C, Chitarra W, Roman F, Schubert A (2012b) Recovery from water stress affects grape leaf petiole transcriptome. Planta 235(6):1383–1396

    Article  CAS  PubMed  Google Scholar 

  • Pockman WT, Sperry JS, Oleary JW (1995) Sustained and significant negative water-pressure in xylem. Nature 378:715–716

    Article  CAS  Google Scholar 

  • Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schaffner AR, Maurel C (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol 152(3):1418–1430. doi:10.1104/pp.109.145326

    Article  CAS  PubMed  Google Scholar 

  • Pou A, Medrano H, Flexas J, Tyerman SD (2013) A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. Plant Cell Environ 36(4):828–843. doi:10.1111/pce.12019

    Article  CAS  PubMed  Google Scholar 

  • Prado K, Boursiac Y, Tournaire-Roux C, Monneuse J-M, Postaire O, Da Ines O, Schaeffner AR, Hem S, Santoni V, Maurel C (2013) Regulation of Arabidopsis Leaf Hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25(3):1029–1039. doi:10.1105/tpc.112.108456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sade N, Shatil-Cohen A, Attia Z, Maurel C, Boursiac Y, Kelly G, Granot D, Yaaran A, Lerner S, Moshelion M (2014) The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. Plant Physiol 166(3):1609–1620. doi:10.1104/pp.114.248633

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakr S, Alves G, Morillon RL, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol 133:630–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salleo S, Nardini A, Pitt F, Lo Gullo MA (2000) Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.). Plant Cell Environ 23(1):71–79. doi:10.1046/j.1365-3040.2000.00516.x

    Article  Google Scholar 

  • Schaffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204(2):131–139. doi:10.1007/s004250050239

    Article  CAS  PubMed  Google Scholar 

  • Scheenen TWJ, Vergeldt FJ, Heemskerk AM, Van As H (2007) Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. Plant Physiol 144(2):1157–1165. doi:10.1104/pp.106.089250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secchi F, Zwieniecki MA (2010) Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant Cell Environ 33(8):1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2011) Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant Cell Environ 34(3):514–524

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2012) Analysis of xylem sap from functional (Nonembolized) and nonfunctional (Embolized) vessels of Populus nigra: chemistry of refilling. Plant Physiol 160(2):955–964. doi:10.1104/pp.112.200824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secchi F, Zwieniecki MA (2013) The physiological response of Populus tremula x alba leaves to the down-regulation of PIP1 aquaporin gene expression under no water stress. Front Plant Sci 4:507. doi:10.3389/fpls.2013.00507

    Article  PubMed  PubMed Central  Google Scholar 

  • Secchi F, Zwieniecki MA (2014) Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism. Plant Physiol 164(4):1789–1799. doi:10.1104/pp.114.237511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secchi F, Lovisolo C, Schubert A (2007a) Expression of OePIP2.1 aquaporin gene and water relations of Olea europaea twigs during drought stress and recovery. Ann Appl Biol 150(2):163–167. doi:10.1111/j.1744-7348.2007.00118.x

    Article  CAS  Google Scholar 

  • Secchi F, Lovisolo C, Uehlein N, Kaldenhoff R, Schubert A (2007b) Isolation and functional characterization of three aquaporins from olive (Olea europaea L.). Planta 225(2):381–392. doi:10.1007/s00425-006-0365-2

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Gilbert ME, Zwieniecki MA (2011) Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling. Plant Physiol 157:1419–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shatil-Cohen A, Attia Z, Moshelion M (2011) Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J 67(1):72–80. doi:10.1111/j.1365-313X.2011.04576.x

    Article  CAS  PubMed  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14(4):869–876. doi:10.1105/tpc.000901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42(7):686–693. doi:10.1093/pcp/pce085

    Article  CAS  PubMed  Google Scholar 

  • Sparks JP, Black RA (2000) Winter hydraulic conductivity end xylem cavitation in coniferous trees from upper and lower treeline. Arct Antarct Alp Res 32(4):397–403. doi:10.2307/1552388

    Article  Google Scholar 

  • Sparks JP, Campbell GS, Black RA (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127(4):468–475. doi:10.1007/s004420000587

    Article  Google Scholar 

  • Sperling O, Earles JM, Secchi F, Godfrey J, Zwieniecki MA (2015) Frost induces respiration and accelerates carbon depletion in trees. PLoS One 10(12):e0144124. doi:10.1371/journal.pone.0144124

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164(3):S115–S127

    Article  Google Scholar 

  • Sperry JS, Holbrook NM, Zimmermann MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83(2):414–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: result from the model. Plant Cell Environ 21:347–359

    Article  Google Scholar 

  • Spicer R, Holbrook NM (2007) Effects of carbon dioxide and oxygen on sapwood respiration in five temperate tree species. J Exp Bot 58(6):1313–1320. doi:10.1093/jxb/erl296

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat UKS, Ganapathi TR (2013) Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol J 8:942–952. doi:10.1111/pbi.12086

    Article  Google Scholar 

  • Stiller V, Sperry JS (2002) Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.). J Exp Bot 53(371):1155–1161. doi:10.1093/jexbot/53.371.1155

    Article  CAS  PubMed  Google Scholar 

  • Suga S, Murai M, Kuwagata T, Maeshima M (2003) Differences in aquaporin levels among cell types of radish and measurement of osmotic water permeability of individual protoplasts. Plant Cell Physiol 44(3):277–286. doi:10.1093/pcp/pcg032

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Rost TL, Matthews MA (2006) Pruning-induced tylose development in stems of current-year shoots of Vitis vinifera (Vitaceae). Am J Bot 93(11):1567–1576. doi:10.3732/ajb.93.11.1567

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Rost TL, Matthews MA (2008) Wound-induced vascular occlusions in Vitis vinifera (Vitaceae): tyloses in summer and gels in winter. Am J Bot 95(12):1498–1505. doi:10.3732/ajb.0800061

    Article  PubMed  Google Scholar 

  • Tomlinson PB, Spangler R (2002) Developmental features of the discontinuous stem vascular system in the rattan palm Calamus (Arecaceae-Calamoideae-Calamineae). Am J Bot 89(7):1128–1141. doi:10.3732/ajb.89.7.1128

    Article  PubMed  Google Scholar 

  • Tomlinson PB, Fisher JB, Spangler RE, Richer RA (2001) Stem vascular architecture in the rattan palm Calamus (Arecaceae-Calamoideae-Galaminae). Am J Bot 88(5):797–809. doi:10.2307/2657032

    Article  CAS  PubMed  Google Scholar 

  • Tsuchihira A, Hanba YT, Kato N, Doi T, Kawazu T, Maeshima M (2010) Effect of overexpression of radish plasma membrane aquaporins on water-use efficiency, photosynthesis and growth of eucalyptus trees. Tree Physiol 30(3):417–430. doi:10.1093/treephys/tpp127

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Dixon MA (1983) Cavitation events in Thuja occidentalis L.?: utrasonic acoustic emissions from the sapwood can be measured. Plant Physiol 72(4):1094–1099. doi:10.1104/pp.72.4.1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody-plants. New Phytol 119(3):345–360. doi:10.1111/j.1469-8137.1991.tb00035.x

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1989) Characterization and propagation of acoustic-emission signals in woody-plants: towards an improved acoustic emission counter. Plant Cell Environ 12(4):371–382. doi:10.1111/j.1365-3040.1989.tb01953.x

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R (1999) Refilling of embolized vessels in young stems of Laurel. Do we need a new paradigm? Plant Physiol 120:11–21

    Article  CAS  PubMed Central  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149(1):445–460. doi:10.1104/pp.108.128645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voicu MC, Zwiazek JJ (2010) Inhibitor studies of leaf lamina hydraulic conductance in trembling aspen (Populus tremuloides Michx.) leaves. Tree Physiol 30(2):193–204. doi:10.1093/treephys/tpp112

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Nelson DE, Ley E, Marquez S, Bohnert HJ (1997) The expression of an aquaporin promoter from Mesembryanthemum crystallinum in tobacco. Plant Cell Physiol 38(12):1326–1332

    Article  CAS  PubMed  Google Scholar 

  • Zweifel R, Zeugin F (2008) Ultrasonic acoustic emissions in drought-stressed trees – more than signals from cavitation? New Phytol 179(4):1070–1079. doi:10.1111/j.1469-8137.2008.02521.x

    Article  CAS  PubMed  Google Scholar 

  • Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14(10):530–534

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej A. Zwieniecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zwieniecki, M.A., Secchi, F. (2017). Role of Aquaporins in the Maintenance of Xylem Hydraulic Capacity. In: Chaumont, F., Tyerman, S. (eds) Plant Aquaporins. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-49395-4_11

Download citation

Publish with us

Policies and ethics