Skip to main content

A New Schema to Identify S-farnesyl Cysteine Prenylation Sites with Substrate Motifs

  • Conference paper
  • First Online:
Advances in Information and Communication Technology (ICTA 2016)

Abstract

Protein prenylation is the addition of hydrophobic molecules to a protein or chemical compound. It is a post-translational modification that plays very important roles for many cellular processes such as DNA replication, signaling, trafficking, and other cellular functions in eukaryotes. Protein S-farnesyl cysteine prenylation is a specific kind of prenylation involved in the transfer of a farnesyl moiety to a cytoplasmic cysteine at or near the C-terminus of the target protein. Recent advancements in proteomic technology have stimulated an increasing interested in the identification of protein S-farnesyl cysteine prenylation sites. However, there is still a lack of methods proposed for the prediction of S-farnesyl cysteine sites. With a rapidly increasing number of experimentally verified S-farnesyl cysteine sites, it is motivated in proposed new method for identifying S-farnesyl cysteine prenylation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kamiya, Y., et al.: Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem. Biophys. Res. Commun. 83(3), 1077–1083 (1978)

    Article  Google Scholar 

  2. Farnsworth, C.C., et al.: Human lamin B contains a farnesylated cysteine residue. J. Biol. Chem. 264(34), 20422–20429 (1989)

    Google Scholar 

  3. Wolda, S.L., Glomset, J.A.: Evidence for modification of lamin B by a product of mevalonic acid. J. Biol. Chem. 263(13), 5997–6000 (1988)

    Google Scholar 

  4. Soni, R., et al.: Structure-based binding between protein farnesyl transferase and PRL-PTP of malaria parasite: an interaction study of prenylation process in Plasmodium. J. Biomol. Struct. Dyn., 1–12 (2016)

    Google Scholar 

  5. Novelli, G., D’Apice, M.R.: Protein farnesylation and disease. J. Inherit. Metab. Dis. 35(5), 917–926 (2012)

    Article  Google Scholar 

  6. Maurer-Stroh, S., et al.: Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput. Biol. 3(4), e66 (2007)

    Article  Google Scholar 

  7. Palsuledesai, C.C., Distefano, M.D.: Protein prenylation: enzymes, therapeutics, and biotechnology applications. ACS Chem. Biol. 10(1), 51–62 (2015)

    Article  Google Scholar 

  8. Hechinger, A.K., et al.: Inhibition of protein geranylgeranylation and farnesylation protects against graft-versus-host disease via effects on CD4 effector T cells. Haematologica 98(1), 31–40 (2013)

    Article  Google Scholar 

  9. Charron, G., et al.: Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc. Natl. Acad. Sci. USA 110(27), 11085–11090 (2013)

    Article  Google Scholar 

  10. Geryk-Hall, M., Yang, Y., Hughes, D.P.: Driven to death: inhibition of farnesylation increases Ras activity and promotes growth arrest and cell death [corrected]. Mol. Cancer Ther. 9(5), 1111–1119 (2010)

    Article  Google Scholar 

  11. Goodsell, D.S.: The molecular perspective: protein farnesyltransferase. Oncologist 8(6), 597–598 (2003)

    Article  Google Scholar 

  12. Einav, S., Glenn, J.S.: Prenylation inhibitors: a novel class of antiviral agents. J. Antimicrob. Chemother. 52(6), 883–886 (2003)

    Article  Google Scholar 

  13. Xie, Y., et al.: GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites, Scientific reports, 6, 28249 (2016)

    Google Scholar 

  14. Maurer-Stroh, S., Eisenhaber, F.: Refinement and prediction of protein prenylation motifs. Genome Biol. 6(6), R55 (2005)

    Article  Google Scholar 

  15. Chen, W.N., et al.: Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)

    Article  Google Scholar 

  16. Nguyen, V.N., et al.: A new scheme to characterize and identify protein ubiquitination sites. In: IEEE/ACM transactions on computational biology and bioinformatics IEEE, ACM (2016)

    Google Scholar 

  17. Nguyen, V.N., et al.: Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities. BMC Bioinform. 16(Suppl. 1), S1 (2015)

    Article  Google Scholar 

  18. Lee, T.Y., et al.: Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics 27(13), 1780–1787 (2011)

    Article  Google Scholar 

  19. Lee, T.Y., et al.: SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity. PLoS One 6(7), e21849 (2011)

    Article  Google Scholar 

  20. Boeckmann, B., et al.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31(1), 365–370 (2003)

    Article  Google Scholar 

  21. Lu, C.T., et al.: DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res. 41(Database issue), D295–D305 (2013)

    Google Scholar 

  22. Keshava Prasad, T.S., et al.: Human protein reference database–2009 update. Nucleic Acids Res. 37(Database issue), D767–D772 (2009)

    Google Scholar 

  23. Huang, Y., et al.: CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26(5), 680–682 (2010)

    Article  Google Scholar 

  24. Altschul, S.F., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  25. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2 (2011)

    Google Scholar 

  26. Nguyen, V.N., et al.: UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation. Database : J. Biol. Databases and Curation (2016)

    Google Scholar 

  27. Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405(2), 442–451 (1975)

    Article  Google Scholar 

  28. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268(1), 78–94 (1997)

    Article  Google Scholar 

  29. Crooks, G.E., et al.: WebLogo: a sequence logo generator. Genome Res. 14(6), 1188–1190 (2004)

    Article  Google Scholar 

  30. Vacic, V., Iakoucheva, L.M., Radivojac, P.: Two sample logo: a graphical representation of the differences between two sets of sequence alignments. Bioinformatics 22(12), 1536–1537 (2006)

    Article  Google Scholar 

  31. Tung, C.W., Ho, S.Y.: Computational identification of ubiquitylation sites from protein sequences. BMC Bioinform. 9, 310 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Van-Nui Nguyen or Tzong-Yi Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nguyen, VN., Tran, TX., Nguyen, HM., Nguyen, HT., Lee, TY. (2017). A New Schema to Identify S-farnesyl Cysteine Prenylation Sites with Substrate Motifs. In: Akagi, M., Nguyen, TT., Vu, DT., Phung, TN., Huynh, VN. (eds) Advances in Information and Communication Technology. ICTA 2016. Advances in Intelligent Systems and Computing, vol 538. Springer, Cham. https://doi.org/10.1007/978-3-319-49073-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49073-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49072-4

  • Online ISBN: 978-3-319-49073-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics