Skip to main content

Ionizing Radiation Interaction in Tissues: Kerma and the Absorbed Dose

  • Chapter
  • First Online:
Applied Physics of External Radiation Exposure

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1574 Accesses

Abstract

In previous chapter, the basic concepts of dosimetry and all elements for the characterization of a radiation field in a point in space, have been defined. This chapter attempts to detail the physical concepts to estimate the mean energy transferred to secondary particles for indirectly ionizing particles and energy locally imparted for directly ionizing particles. These estimates allow then analytical approaches, under certain conditions, for basic dosimetric quantities that are respectively: kerma and absorbed dose. These two variables and fluence are the primary quantities which are connected to protection and operational and quantities that are defined in the next chapter. The principles and techniques of measurements of these primary dosimetric quantities are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 2011, the ICRU 85a [4] adopts the term (dT/ dx)el to set the mass stopping power by Coulomb electron interaction instead of commonly used term (dT/ dx)col for the mass stopping power by collision. However, the notation “col” is maintained to ensure confirmity with the tables of mass stopping power cited therein.

References

  1. Collot, J. (2001). Cours de physique expérimentale des hautes énergies du DEA de physique théorique Rhône-Alpes.

    Google Scholar 

  2. Drouin, D., Réal Couture, A., Joly, D., Tastet, X., Aimez, V., & Gauvin, R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29(3), 92–101.

    Article  Google Scholar 

  3. Katz, L., & Penfold, A. S. (1952). Range energy relations for electrons and the determination on beta–ray end point energies by absorption. Reviews of Modern Physics, 24(1), 28–44.

    Article  ADS  Google Scholar 

  4. ICRU (2011) Fundamental quantities and units for ionizing radiation (revised). Publication 85a.

    Google Scholar 

  5. Paganetti, H. (2002). Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Physics in Medicine & Biology, 47, 747–764.

    Article  ADS  Google Scholar 

  6. Rohrlish, C. (1953). Positron-electron differences in energy loss and multiple scattering. Physical Review, 93(1954), 38–44.

    ADS  Google Scholar 

  7. ICRU (1984) Stopping powers for electrons and positrons. Publication 37.

    Google Scholar 

  8. ICRU (1993) Stopping powers and ranges for protons and alpha particles. Publication 49.

    Google Scholar 

  9. ICRU (1984). Radiation dosimetry: Electron beams with energies between 1 and 50 MeV. Report 35.

    Google Scholar 

  10. Grosswendt, B. (1994). Determination of electron depth-dose curves for water, ICRU tissue, and PMMA and their application to radiation protection dosimetry. Radiation Protection Dosimetry, 54(2), 85–97.

    Google Scholar 

  11. Profio, A. E. (1979). Radiation shielding and dosimetry. New York, NY: Wiley.

    Google Scholar 

  12. Loevinger R, Japha EM, Brownwell G (1956) L. Discrete radioisotope sources. In Hine, G. J., Brownell, G. L. (Eds.) Radiation dosimetry (pp. 693–799). Academic Press.

    Google Scholar 

  13. Cross, W. G. (1997). Empirical expression for beta ray point source dose distributions. Radiation Protection Dosimetry, 69(2), 85–96.

    Article  Google Scholar 

  14. Bourgois, L. (2011). Estimation de la dose extrémité due à une contamination par un radionucléide émetteur β: l’équivalent de dose est-il un bon estimateur de la grandeur de protection? Radioprotection, 46(2), 175–187.

    Article  Google Scholar 

  15. Pelowitz, D. B. (2005). MCNPX user’s manual version 2.5.0. LA–CP–05–0369.

    Google Scholar 

  16. Gunzert-Marx, K., Iwase, H., Schardt, D., Simon, R. S. (2008). Secondary beam fragments produced by 200 MeV.u−1 12C ions in water and their dose contributions in carbon ion radiotherapy. New Journal of Physics, 10(075003), 21 p.

    Google Scholar 

  17. Golovachik, V. T., Kustarjov, V. N., Savitskaya, E. N., & Sannikov, A. V. (1989). Absorbed dose and dose equivalent depth distributions for protons with energies from 2 to 600 MeV. Radiation Protection Dosimetry, 28(3), 189–199.

    Google Scholar 

  18. Pelliccioni, M. (1998). Fluence to dose equivalent conversion data and radiation weighting factors for high energy radiation. Radiation Protection Dosimetry, 77(3), 159–170.

    Article  Google Scholar 

  19. Daures, J., & Ostrowsky, A. (2005). New constant-temperature operating mode for graphite calorimeter at LNE-LNHB. Physics in Medicine & Biology, 50, 4035–4052.

    Article  ADS  Google Scholar 

  20. Klein, O., & Nishina, Y. (1929). Die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift für Physik, 52(11–12), 853–869.

    Article  ADS  MATH  Google Scholar 

  21. Shultis, J. K., Faw, R. E. (2000). Radiation shielding. American Nuclear Society, Inc.

    Google Scholar 

  22. Hubbell, J. H., Seltzer, S. M. (1996). Tables of X–ray mass attenuation coefficients and mass energy–absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48, Additional Substances of Dosimetric Interest Ionizing Radiation Division, Physics Laboratory, NIST. Disponible sur le site http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html et http://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html.

  23. ICRU (1980) Radiation quantities and units. Publication 33.

    Google Scholar 

  24. Gambini, D. J., Granier, R. (1997). Manuel pratique de radioprotection. 2e éd, Tec & Doc.

    Google Scholar 

  25. Barthe, J., Chauvenet, B., & Bordy, J. M. (2006). La métrologie de la dose au CEA: le Laboratoire National Henri Becquerel. Radioprotection, 41(5), 9–24.

    Article  Google Scholar 

  26. Fano, U. (1956). Note on the Bragg-Gray cavity principle for measuring energy dissipation. Radiation Research, 1, 237–240.

    Article  Google Scholar 

  27. Wall, J. A., & Burke, E. A. (1974). Dose distributions at and near the interface of different materials exposed to Co-60 gamma radiation, report AFCRL-TR-0004. NM: Sandia National Laboratory.

    Google Scholar 

  28. Wall, J.A., Burke, E.A. (1970). Gamma dose distributions at and near the interface of different materials nuclear science. IEEE Transactions on Nuclear Science, vol. 17.

    Google Scholar 

  29. Burlin, T. E. (1966). A general theory of cavity ionisation. The British Journal of Radiology, 39(466), 727–734.

    Article  Google Scholar 

  30. Lefort M (1966) La chimie nucléaire: étude des noyaux radioactifs et des réactions nucléaires. Dunod.

    Google Scholar 

  31. Caswell, R. S., Coyne, J. J., & Randolph, M. L. (1980). Kerma factors for neutron energies below 30 MeV. Radiation Research, 83(2), 217–254.

    Article  Google Scholar 

  32. ICRU (2000) Nuclear data for neutron and proton radiotherapy and for radiation protection. Publication 63.

    Google Scholar 

  33. ICRU (2001) Determination of operational dose equivalent quantities for neutrons. Publication 66.

    Google Scholar 

  34. ICRU (1998) Conversion coefficients for use in radiological protection against external radiation. Publication 57.

    Google Scholar 

  35. Briesmeister, J. F. (1997). MCNP—A general Monte-Carlo N- Particle Transport Code version 4B LA-12625-M.

    Google Scholar 

  36. Faussot, A., Antoni, R. (2008). Cours de dosimétrie fondamentale du Brevet de technicien supérieur en radioprotection.

    Google Scholar 

  37. Veinot, K. G., Hertel, N. E. (2005). Effective quality factor for neutrons based on the revised ICRP/ICRU recommendations. Radiation Protection Dosimetry, 115(1–4), 536–541.

    Google Scholar 

  38. Gayther, (1990). International intercomparison of fast neutron fluence-rate measurements using fission chamber transfer instruments. Metrologia, 27, 221–231.

    Article  ADS  Google Scholar 

  39. Hanson, A. O., & McKibben, J. L. (1947). A neutron detector having uniform sensitivity from 10 KeV to 3 MeV. Physical Review, 72(8), 673–677.

    Article  ADS  Google Scholar 

  40. De Pangher, J., Nichols, L. L. (1966). A precision long counter for measuring fast neutron flux density, BNML-260.

    Google Scholar 

  41. Lacoste, V. (2010). Design of a new long counter for the determination of the neutron fluence reference values at the IRSN AMANDE facility. Radiation Measurements, 45, 1250–1253.

    Article  Google Scholar 

  42. Lacoste, V., & Gressier, V. (2010). Experimental characterisation of the IRSN long counter for the determination of the neutron fluence reference values at the AMANDE facility. Radiation Measurements, 45, 1254–1257.

    Article  Google Scholar 

  43. Roberts, N. J., Douglas, D. J., Lacoste, V., Böttger, R., & Loeb, S. (2010). Comparison of long counter measurements of monoenergetic and radionuclide source-based neutron fluence. Radiation Measurements, 45, 1151–1153.

    Article  Google Scholar 

  44. Holt, P. D. (1985). Passive detectors for neutron fluence measurement. Radiation Protection Dosimetry, 10(1–4), 251–264.

    Google Scholar 

  45. Alevra, A. V. (1999). Neutron spectrometry. Radioprotection, 34(3), 304–333.

    Article  Google Scholar 

  46. Brooks, F. D., & Klein, H. (2002). Neutron spectrometry – historical review and present status. Nuclear Instruments and Methods A, 476, 1–11.

    Article  ADS  Google Scholar 

  47. Pichenot, G., Guldbakke, S., Asselineau, B., Gressier, V., Itié, C., Klein, H., et al. (2002). Characterisation of spherical recoil proton proportional counters used for neutron spectrometry. Nuclear Instruments and Methods A, 476, 165–169.

    Article  ADS  Google Scholar 

  48. Bramblett, R. L., Ewing, R. I., & Bonner, T. W. (1960). A new type of neutron spectrometer. Nuclear Instruments and Methods, 9, 1–12.

    Article  ADS  Google Scholar 

  49. Vega-Carrillo, H. R., Manzanares-Acuña, E., Hernández-Dávila, Mercado Sánchez, G. A. (2005). Response matrix of a multisphere spectrometer with an 3He proportional counter. Revista Mexicana de Fisica, 51 (1), 45–52.

    Google Scholar 

  50. Ing, H., Clifford, T., McLean, T., Webb, W., Cousin, T., & Dhermain, J. (1997). A simple reliable high resolution neutron spectrometer. Radiation Protection Dosimetry, 70(1–4), 273–278.

    Article  Google Scholar 

  51. Crovisier, P., Asselineau, B., Pelcot, G., Van-Ryckeghem, L., Cadiou, A., Truffert, H., et al. (2005). French comparison exercise with the rotating neutron spectrometer, “ROSPEC”. Radiation Protection Dosimetry, 115(1–4), 324–328.

    Article  Google Scholar 

  52. Sternheimer, R. M. (1966). Density effect for the ionization loss of charged particles. Physical Review, 145(1), 247–250.

    Article  ADS  Google Scholar 

  53. Williamson, C., Boujot, J. P., Picard, J. (1966). Tables of range and stopping power of chemical elements for charges particles of energy 0,5 to 500 MeV. Rapport CEA R 3042.

    Google Scholar 

  54. Northcliffe, L. C. (1960). Energy loss and effective charge of heavy ions in aluminum. Physical Review, 120, 1744–1757.

    Article  ADS  Google Scholar 

  55. Pagès L, Bertel E, Joffre H, Sklavenitis L (1972) Energy loss range, and bremsstrahlung yield for 10 keV to 100 MeV electrons. Atomic Data and Nuclear Data, 4(1).

    Google Scholar 

  56. Berger, M. J., Coursey, J. S., Zucker, M. A., Chang, J. Stopping-power and range tables for electrons, protons, and helium ions. http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.

  57. Heimbach, C. (2006). NIST calibration of a neutron spectrometer ROSPEC. Journal of research of the National Institute of Standards and Technology, 111, 419–428.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Antoni .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Antoni, R., Bourgois, L. (2017). Ionizing Radiation Interaction in Tissues: Kerma and the Absorbed Dose. In: Applied Physics of External Radiation Exposure. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-48660-4_2

Download citation

Publish with us

Policies and ethics