Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1080 Accesses

Abstract

We open this chapter with a general consideration of the role of dimensionality in plasmonics. Subsequently, specializing in earnest to graphene, we examine the existence of plasmons in extended sheets of doped graphene. Finally, following an extensive discussion of plasmons in nanostructured graphene, we explore plasmons in curved graphene, concretely in graphene-coated nanospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Graphene plasmonics, with very few exceptions, require nonzero doping—the premise of our investigation consequently relies on nonzero doping, i.e. \( {\epsilon } _{\textsc {f}} \ne 0\).

  2. 2.

    E.g., in a recent review of two-dimensional nanophotonics [2], just two citations precede the 2004 discovery of graphene, both in reference to bulk properties.

  3. 3.

    See similar treatments in Refs. [12] and [13].

  4. 4.

    The 1D transform can be performed using \(\int _{-\infty }^{\infty } \frac{\mathrm {e}^{- \mathrm {i} q x}}{\sqrt{x^2 + a^2}} \, \mathrm {d} {x}=2K_0(qa)\). In polar coordinates the 2D transform requires \(\int _0^{2\pi } \mathrm {e}^{- \mathrm {i} x\cos \theta } \, \mathrm {d} \theta = 2\pi J_0(x)\) and \(\int _0^\infty J_0(qr) \, \mathrm {d} {r} = q^{-1}\). Finally, by considering a Yukawa potential \(\mathrm {e}^{-q_{\textsc {y}}r}/r\) in the \(q_{\textsc {y}}\rightarrow 0^+\) limit, the 3D transform can be deduced in spherical coordinates using \(\int _0^\pi \mathrm {e}^{- \mathrm {i} x\cos \theta }\sin \theta \, \mathrm {d} \theta = 2\,\mathrm {sinc}\,x\) and \(\int _0^\infty \mathrm {e}^{-q_{\textsc {y}}r}\sin qr \, \mathrm {d} {r} = \frac{q}{q^2+q_{\textsc {y}}^2}\).

  5. 5.

    The surface-current approach is analogous to the dipole approximation familiar from field-emitter interactions; its validity is guaranteed by the complete fulfillment of the condition \(h_{\scriptscriptstyle \text {g}} /\lambda \ll 1\) for wavelengths \(\lambda \) up to the ultraviolet.

  6. 6.

    More generally, the effective dielectric cladding imparts a rescaling of the in-plane Coulomb interaction \(V( \mathbf {r}_{{\scriptscriptstyle \parallel }} , \mathbf {r}_{{\scriptscriptstyle \parallel }} ') \rightarrow \bar{\varepsilon }^{-1}V( \mathbf {r}_{{\scriptscriptstyle \parallel }} , \mathbf {r}_{{\scriptscriptstyle \parallel }} ')\) in the nonretarded limit. This rescaling is rigorous; we revisit it in Sect. 5.3.

  7. 7.

    The opposite limit, i.e. \(\hbar \omega \ll \alpha {\epsilon } _{\textsc {f}} \), though of little technological or plasmonic importance is noteworthy at least for the sake of completeness. There, as was the case also for metal SPPs, the graphene SPP eventually exhibits predominately polaritonic properties, with dispersion \( k_{\scriptscriptstyle \parallel } \simeq k_0\sqrt{\bar{\varepsilon }} + \mathcal {O}[(\hbar \omega /\alpha {\epsilon } _{\textsc {f}} )^2]\). In other words, the dispersion is ultimately linear for \(\omega \rightarrow 0\).

  8. 8.

    For nonvanishing but small loss, the plasmon frequency \(\omega _{\textsc {gp}}^{\scriptscriptstyle \text {intra}} \) acquires a finite imaginary part \(\simeq \mathrm {i} \gamma /2\).

  9. 9.

    In practice, the dispersion is obtained by minimizing \(|1-V( k_{\scriptscriptstyle \parallel } )\text {Re}\chi ^0( k_{\scriptscriptstyle \parallel } ,\omega )|\) over real, positive \(\{ k_{\scriptscriptstyle \parallel } ,\omega \}\).

  10. 10.

    To include loss it is necessary to solve \(1-V( k_{\scriptscriptstyle \parallel } )\chi ^0( k_{\scriptscriptstyle \parallel } ,\omega )=0\) in \(\{ k_{\scriptscriptstyle \parallel } ,\omega \}\) with either \( k_{\scriptscriptstyle \parallel } \) or \(\omega \) complex, rather than \(1-V( k_{\scriptscriptstyle \parallel } )\text {Re}\chi ^0( k_{\scriptscriptstyle \parallel } ,\omega )=0\) in real variables. Beyond a perturbative approach [19], which is inapplicable in Landau regions, this has not been achieved in nonlocal treatments. Arguably, a quantitative resolution of this issue is of modest practical worth: plasmon properties are certainly poor in these regions.

  11. 11.

    See Appendix A for a treatment of the interaction between a normally incident electron and graphene.

  12. 12.

    We note that the application of the linear, no-recoil EELS framework, Eq. (2.26), to such low acceleration energies carries an undeniable degree of unease: as the energy-loss eventually constitutes a sizable fraction of the total electron energy, the electron is deflected from its straight path, inducing further complication of a self-consistent kind that is not captured by Eq. (2.26).

  13. 13.

    The TE GPP is also limited from above to energies \(\hbar \omega / {\epsilon } _{\textsc {f}} <2\) due to the onset of vertical Landau damping.

  14. 14.

    It was recently suggested, perhaps optimistically, that this restriction on \(\varepsilon -1\) might be turned to functionality in the context of ultra-sensitive sensing of dielectric environments [26].

  15. 15.

    The integration domain \(\tilde{\Omega }\) is indicated in Eq. (5.14a) for mnemonic reasons only: in principle the integral extends over all of \(\tilde{ \mathbf {r} }_{{\scriptscriptstyle \parallel }}'\in \mathbb {R}^2\), but is limited in practice by the extent of \(f(\tilde{ \mathbf {r} }_{{\scriptscriptstyle \parallel }}')\), assumed bounded by \(\tilde{\Omega }\).

  16. 16.

    The gradient of the indicator function is the analogue of the derivative of the Heaviside step function, in the sense that: \(\int _{\scriptscriptstyle \Omega } [\nabla {\mathbbm {1}}_{\scriptscriptstyle \Omega } ( \mathbf {r} )] \cdot \mathbf {g}( \mathbf {r} ) \, \mathrm {d} ^d \mathbf {r} = - \oint _{\scriptscriptstyle \partial \Omega } \hat{\mathbf {n}}\cdot \mathbf {g}( \mathbf {r} ) \, \mathrm {d} ^{d-1} \mathbf {r} \) for \(\Omega \in \mathbb {R}^n\) and outward normal vector \(\hat{\mathbf {n}}\).

  17. 17.

    The surface integral over \(\Omega _+\) reduces to an integral over \(\Omega \) since \({\mathbbm {1}}_{\Omega }( \mathbf {r}_{{\scriptscriptstyle \parallel }} )\) vanishes for \( \mathbf {r}_{{\scriptscriptstyle \parallel }} \!\notin \!\Omega \), i.e. there is no contribution from the small annulus \(\Omega _+\backslash \Omega \).

  18. 18.

    We emphasize that this step does not make use of the BC—it is merely a consequence of the assumed reduction of integration domain from \(\Omega \) to \(\Omega _-\).

  19. 19.

    The response-magnitude at each eigenfrequency will, of course, depend on the associated eigenstates; but is crucially similarly separable in geometric, scale, and material dependencies.

  20. 20.

    We suggest that the comparative absence of analytical solutions relative to 3D metal plasmonics, can be traced to a dimensional mismatch between structure and space: a 2D graphene sample exists in a 3D electromagnetic reality; accordingly, severe restrictions on “good” symmetries are imposed from the outset.

  21. 21.

    We note the relevant definite integrals [29]: \(\int _0^{2\pi } \mathrm {e}^{ \mathrm {i} r\cos \theta } \, \mathrm {d} \theta = 2\pi J_0(r)\) and \(\int _0^\infty J_0(r) \, \mathrm {d} {r} = 1\).

  22. 22.

    The analytical origin of the value \(\zeta _{\scriptscriptstyle \text {edge}} \approx 0.8216\) is provided by the Wiener–Hopf technique: it is the solution to the integral equation \(\int _0^{\pi /2} \ln [(\zeta \sin {x})^{-1}-1] \, \mathrm {d} {x} = 0\) [27].

  23. 23.

    The fits have a mean relative deviation of less than \(\approx \!2\) ‰ compared to the full numerical solution. The monopole fit, \(n=0\), however, is less accurate (\({\approx }1\) %). This is because the monopole is physically distinct from the \(n\ne 0\) modes for \( k_{\scriptscriptstyle \parallel } W \ll 1\) where it exhibits distinctively 1D behavior (see Table 5.1) of the sort \(\zeta _0 \propto ( k_{\scriptscriptstyle \parallel } W)^2 \ln ( k_{\scriptscriptstyle \parallel } W)\), with an associated frequency dispersion \(\omega \propto k_{\scriptscriptstyle \parallel } \sqrt{\ln ( k_{\scriptscriptstyle \parallel } W)}\). An analytical demonstration of this latter point is provided by the variational treatment of Ref. [34].

  24. 24.

    We note an unfortunate typographic error in the Supplementary Material of Publication E: in Eq. (S13c), the term \(\propto \!\delta _{j,k+1}\) is divided by \(8\prod _{p=1}^{3}(l+2j+p)\). This divisor should have read \(8\prod _{p=1}^{3}(l+2k+p)\) in order to provide a symmetric matrix.

  25. 25.

    For an arbitrarily polarized excitation wave, e.g. along \(\hat{\mathbf {n}}_ \mathbf {E} \), the relevant polarizability is trivially obtained from (5.22) by the substitution \(\tilde{x}\rightarrow \hat{\mathbf {n}}_ \mathbf {E} \cdot \tilde{ \mathbf {r} }_{{\scriptscriptstyle \parallel }}\).

  26. 26.

    We remind that the nanoribbon’s polarizability requires special interpretation cf. its semi-infinite extent; nevertheless the concept is still fruitful, e.g. in consideration of absorption per unit length.

  27. 27.

    \(N\times N\) matrix inversion exhibits computational complexity \(\mathcal {O}(N^3)\) for the conventional Gauss-Jordan algorithm; improved scaling can be obtained for large N using iterative methods.

  28. 28.

    The otherwise interesting topic of lattice-coupling, i.e. nanostructures in periodic arrays, we leave entirely aside, although it is straightforwardly treatable by lattice-summation in the dipole limit [47].

  29. 29.

    Graphene bowties, first treated in Ref. [48], is discussed further in Publication C.

  30. 30.

    Although fullerenes represent a tempting small-scale analogy, they are likely not well-described by the theory developed here: in very small fullerenes quantum effects are important and an extended-graphene description accordingly poor, while the larger fullerenes exhibit icosadhedral rather than spherical configurations [63, 64].

  31. 31.

    Several additional examples and explicit calculations related to coated nanospheres are presented in Publication D, including treatments of size-dispersion, far-field extinction, hybridization with an underlying Drude-sphere, and inclusion of hydrodynamic response.

References

  1. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  2. F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8, 899 (2014)

    Google Scholar 

  3. F. Stern, Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18, 546 (1967)

    Article  ADS  Google Scholar 

  4. A.L. Fetter, Electrodynamics of a layered electron gas. I. Single layer. Ann. Phys. 81, 367 (1973)

    ADS  Google Scholar 

  5. C.C. Grimes, G. Adams, Observation of two-dimensional plasmons and electron-ripplon scattering in a sheet of electrons on liquid helium. Phys. Rev. Lett. 36, 145 (1976)

    Article  ADS  Google Scholar 

  6. T.N. Theis, Plasmons in inversion layers. Surf. Sci. 98, 515 (1980)

    Article  ADS  Google Scholar 

  7. T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  8. S.J. Allen Jr., D.C. Tsui, R.A. Logan, Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980 (1977)

    Article  ADS  Google Scholar 

  9. T.N. Theis, J.P. Kotthaus, P.J. Stiles, Two-dimensional magnetoplasmon in the silicon inversion layer. Solid State Commun. 24, 273 (1977)

    Article  ADS  Google Scholar 

  10. D.B. Mast, A.J. Dahm, A.L. Fetter, Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid. Phys. Rev. Lett. 54, 1706 (1985)

    Article  ADS  Google Scholar 

  11. D.C. Glattli, E.Y. Andrei, G. Deville, F.I.B. Williams, 1D perimeter waves in a classical 2D electron system. Surf. Sci. 170, 70 (1986)

    Article  ADS  Google Scholar 

  12. B.M. Santoyo, M. del Castillo-Mussot, Plasmons in three, two and one dimension. Rev. Mex. Fis. 39, 640 (1993)

    Google Scholar 

  13. K. Linghua, Y. Baorong, H. Xiwei, Dispersion relations of longitudinal plasmons in one, two and three dimensional electron gas of metals. Plasma Sci. Technol. 9, 519 (2007)

    Article  Google Scholar 

  14. S.A. Mikhailov, K. Ziegler, Newelectromagneticmode in graphene. Phys. Rev. Lett. 99, 016803 (2007)

    Article  ADS  Google Scholar 

  15. A. Bondi, Van der Waals volumes and radii. J. Phys. Chem. 68, 441 (1964)

    Article  Google Scholar 

  16. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012)

    Google Scholar 

  17. F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370 (2011)

    Article  ADS  Google Scholar 

  18. R. Messina, J.-R. Hugonin, J.-J. Greffet, F. Marquier, Y. DeWilde, A. Belarouci, L. Frechette, Y. Cordier, P. Ben-Abdallah, Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with grapheme plasmons. Phys. Rev. B 87, 085421 (2013)

    Article  ADS  Google Scholar 

  19. M. Jablan, H. Buljan, M. Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  20. V. Ariel, A. Natan, Electron effective mass in graphene, in Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA) (2013), pp. 696–698

    Google Scholar 

  21. T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, N.A. Mortensen, Classical and quantum plasmonics in graphene nanodisks: role of edge states. Phys. Rev. B 90, 241414(R) (2014)

    Article  ADS  Google Scholar 

  22. X. Zhu, W. Yan, P.U. Jepsen, O. Hansen, N.A. Mortensen, S. Xiao, Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating. Appl. Phys. Lett. 102, 131101 (2013)

    Article  ADS  Google Scholar 

  23. F.J. García de Abajo, Multiple excitation of confined graphene plasmons by single free electrons. ACS Nano 7, 11409 (2013)

    Article  Google Scholar 

  24. M. Rocca, Low-energy EELS investigation of surface electronic excitations onmetals. Surf. Sci. Rep. 22, 1 (1995)

    Article  ADS  Google Scholar 

  25. Y. Liu, R.F. Willis, K.V. Emtsev, T. Seyller, Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 78, 201403 (2008)

    Article  ADS  Google Scholar 

  26. O.V. Kotov, M.A. Kol’chenko, Y.E. Lozovik, Ultrahigh refractive index sensitivity of TE-polarized electromagnetic waves in graphene at the interface between two dielectric media. Opt. Express 21, 13533 (2013)

    Article  ADS  Google Scholar 

  27. V.A. Volkov, S.A. Mikhailov, Edge magnetoplasmons: low frequency weakly damped excitations in inhomogeneous two-dimensional electron systems. Sov. Phys. JETP 67, 1639 (1988)

    Google Scholar 

  28. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  29. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Elsevier Academic Press, 2007)

    Google Scholar 

  30. V.A. Volkov, S.A. Mikhailov, Theory of edge magnetoplasmons in a two-dimensional electron gas. JETP Lett. 42, 556 (1985)

    ADS  Google Scholar 

  31. A.L. Fetter, Edge magnetoplasmons in a two-dimensional electron fluid confined to a half-space. Phys. Rev. B 33, 3717 (1986)

    Article  ADS  Google Scholar 

  32. T. Christensen, W. Yan, A.-P. Jauho, M. Wubs, N.A. Mortensen, Kerr nonlinearity and plasmonic bistability in graphene nanoribbons. Phys. Rev. B 92, 121407(R) (2015)

    Article  ADS  Google Scholar 

  33. V. Cataudella, G. Iadonisi, Magnetoplasmons in a two-dimensional electron gas: strip geometry. Phys. Rev. B 35, 7443 (1987)

    Article  ADS  Google Scholar 

  34. S. Rudin, M. Dyakonov, Edge and strip plasmons in a two-dimensional electron fluid. Phys. Rev. B 55, 4684 (1997)

    Article  ADS  Google Scholar 

  35. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F.H.L. Koppens, F.J. García de Abajo, Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6, 431 (2012)

    Article  Google Scholar 

  36. K.A. Velizhanin, Geometric universality of plasmon modes in graphene nanoribbon arrays. Phys. Rev. B 91, 125429 (2015)

    Article  ADS  Google Scholar 

  37. S. Thongrattanasiri, F.H.L. Koppens, F.J. García de Abajo, Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  38. W. Wang, P.S. Apell, J.M. Kinaret, Edge magnetoplasmons and the optical excitations in graphene disks. Phys. Rev. B 86, 125450 (2012)

    Article  ADS  Google Scholar 

  39. F.J. García de Abajo, A. Manjavacas, Plasmonics in atomically thinmaterials. Faraday Discuss. 178, 87 (2015)

    Article  Google Scholar 

  40. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, F.J. García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388 (2013)

    Article  Google Scholar 

  41. Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299 (2014)

    Article  ADS  Google Scholar 

  42. X. Zhu, W. Wang, W. Yan, M.B. Larsen, P. Bøggild, T.G. Pedersen, S. Xiao, J. Zi, N.A. Mortensen, Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography. Nano Lett. 14, 2907 (2014)

    Article  ADS  Google Scholar 

  43. A.L. Fetter, Magnetoplasmons in a two-dimensional electron fluid: disk geometry. Phys. Rev. B 33, 5221 (1986)

    Article  ADS  Google Scholar 

  44. F. Ouyang, M. Isaacson, Surface plasmon excitation of objects with arbitrary shape and dielectric constant. Philos. Mag. B 60, 481 (1989)

    Article  ADS  Google Scholar 

  45. W. Wang, T. Christensen, A.-P. Jauho, K.S. Thygesen, M. Wubs, N.A. Mortensen, Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles. Sci. Rep. 5, 9535 (2015)

    Article  ADS  Google Scholar 

  46. T. Christensen, W. Yan, S. Raza, A.-P. Jauho, N.A. Mortensen, M. Wubs, Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano 8, 1745 (2014)

    Article  Google Scholar 

  47. F.J. García de Abajo, Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267 (2007)

    Article  ADS  Google Scholar 

  48. S. Thongrattanasiri, F.J. García de Abajo, Optical field enhancement by strong plasmon interaction in graphene nanostructures. Phys. Rev. Lett. 110, 187401 (2013)

    Article  ADS  Google Scholar 

  49. W.B. Lu, W. Zhu, H.J. Xu, Z.H. Ni, Z.G. Dong, T.J. Cui, Flexible transformation plasmonics using graphene. Opt. Express 21, 10475 (2013)

    Article  ADS  Google Scholar 

  50. D.A. Smirnova, S.H. Mousavi, Z. Wang, Y.S. Kivshar, B. Khanikaev, Trapping and guiding surface plasmons in curved graphene landscapes. ACS Photonics 3, 875 (2016)

    Article  Google Scholar 

  51. P.-Y. Chen, J. Soric, and A. Alú, Invisibility and cloaking based on scattering cancellation, Adv. Mater. 24, OP281 (2012)

    Google Scholar 

  52. P. Chen, J. Soric, Y.R. Padooru, H.M. Bernety, A.B. Yakovlev, A. Alú, Nanostructured graphene metasurface for tunable terahertz cloaking. New J. Phys. 15, 123029 (2013)

    Article  ADS  Google Scholar 

  53. B. Zhu, G. Ren, Y. Gao, Y. Yang, Y. Lian, S. Jian, Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes. Opt. Express 22, 24096 (2014)

    Article  ADS  Google Scholar 

  54. Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, S. Jian, Analyticalmodel for plasmon modes in graphene-coated nanowire. Opt. Express 22, 24322 (2014)

    Article  ADS  Google Scholar 

  55. Y. Gao, G. Ren, B. Zhu, J. Wang, S. Jian, Single-mode graphene-coated nanowire plasmonic waveguide. Opt. Lett. 39, 5909 (2014)

    Article  ADS  Google Scholar 

  56. Z.-R. Huang, L.L. Wang, B. Sun, M.-D. He, J.-Q. Liu, H.-J. Li, X. Zhai, A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface. J. Opt. 16, 105004 (2014)

    Article  ADS  Google Scholar 

  57. L. Martin-Moreno, F.J. García de Abajo, F.J. García-Vidal, Ultraeffcient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube. Phys. Rev. Lett. 115, 173601 (2015)

    Article  ADS  Google Scholar 

  58. M. Riso, M. Cuevas, R.A. Depine, Tunable plasmonic enhancement of light scattering and absorption in graphene-coated subwavelength wires. J. Opt. 17, 075001 (2015)

    Article  ADS  Google Scholar 

  59. T. Christensen, A.-P. Jauho, M. Wubs, N.A. Mortensen, Localized plasmons in graphene-coated nanospheres. Phys. Rev. B 91, 125414 (2015)

    Article  ADS  Google Scholar 

  60. L. Wu, H. Feng, M. Liu, K. Zhang, J. Li, Graphene-based hollow spheres as effcient electrocatalysts for oxygen reduction. Nanoscale 5, 10839 (2013)

    Article  ADS  Google Scholar 

  61. H. Yang, Z. Hou, N. Zhou, B. He, J. Cao, Y. Kuang, Graphene-encapsulated SnO\(_2\) hollow spheres as high-performance anode materials for lithium ion batteries. Ceram. Int. 40, 13903 (2014)

    Article  Google Scholar 

  62. J.-S. Lee, S.-I. Kim, J.-C. Yoon, J.-H. Jang, Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 7, 6047 (2013)

    Article  Google Scholar 

  63. D. Bakowies, M. Buehl, W. Thiel, Can large fullerenes be spherical? J. Am. Chem. Soc. 117, 10113 (1995)

    Article  Google Scholar 

  64. P. Calaminici, G. Geudtner, A.M. Köster, First-principle calculations of large fullerenes. J. Chem. Theory Comput. 5, 29 (2009)

    Article  Google Scholar 

  65. J.-C. Charlier, X. Blase, S. Roche, Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677 (2007)

    Article  ADS  Google Scholar 

  66. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Google Scholar 

  67. J. Vielma, P. Leung, Nonlocal optical effects on the fluorescence and decay rates for admolecules at a metallic nanoparticle. J. Chem. Phys. 126, 194704 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Christensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Christensen, T. (2017). Classical Graphene Plasmonics. In: From Classical to Quantum Plasmonics in Three and Two Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48562-1_5

Download citation

Publish with us

Policies and ethics