Skip to main content

Geometry and Scaling of Vortex Lines

  • Chapter
  • First Online:
Analysis of Quantised Vortex Tangle

Part of the book series: Springer Theses ((Springer Theses))

  • 351 Accesses

Abstract

Many geometrical properties can be be used to characterise space curves, and for random filaments such as the vortices in wave chaos may take particular statistical values. In this Chapter we introduce and apply several of these standard measures, relating the statistics of the vortices to those of random walks, and comparing with other systems of filamentary tangle. These measures include densities, curvatures and torsions, whose behaviours can be compared to known results on wave chaos, as well as the fractalities and scaling relations which can take particular universal values, indicating that vortices behave randomly on large scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Taylor, M.R. Dennis. Geometry and scaling of tangled vortex lines in three-dimensional random wave fields. J. Phys. A. 470 (46), 0 465101 (2014)

    Google Scholar 

  2. I.B. Halperin, Statistical mechanics of topological defects, eds. by R. Balian, Kléman, J.-P. Poirier Les Houches Session XXV–Physics of Defects (1981)

    Google Scholar 

  3. M.V. Berry, M.R. Dennis, Phase singularities in isotropic random waves. Proc. Roy. Soc. S 456, 2059–79 (2000). Including erratum

    Google Scholar 

  4. H. Ishio, A.I. Saichev, A.F. Sadreev, K.-F. Berggren, Wave function statistics for ballistic quantum transport through chaotic open billiards: statistical crossover and coexistence of regular and chaotic waves. Phys. Rev. E 64, 056208 (2001)

    Google Scholar 

  5. M.R. Dennis, Topological singularities in wave fields. PhD thesis, University of Bristol (2001)

    Google Scholar 

  6. K. O’Holleran, M.R. Dennis, F. Flossmann, M.J. Padgett, Fractality of light’s darkness. Phys. Rev. Lett. 100, 053902 (2008)

    Google Scholar 

  7. K. O’Holleran, Fractality and topology of optical singularities. PhD thesis, Department of Physics and Astronomy, Faculty of Physical Sciences, University of Glasgow (2008)

    Google Scholar 

  8. M.V. Berry, M. Robnik, Quantum states without time-reversal symmetry: wavefront dislocations in a non-integrable Aharonov-Bohm billiard. Proc. Roy. Soc. A 19, 1365–1372 (1986)

    MathSciNet  MATH  Google Scholar 

  9. R. Höhmann, U. Kuhl, H.-J. Stöckmann, J.D. Urbina, M.R. Dennis. Density and correlation functions of vortex and saddle points in open billiard systems. Phys. Rev. E 79, 016203 (2009)

    Google Scholar 

  10. M.V. Berry, Regular and irregular semiclassical wavefunctions. J. Phys. A 10, 2083–2091 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. G. Blum, S. Gnutzmann, U. Smilansky. Nodal domains statistics—a criterion for quantum chaos. Phys. Rev. Lett. 88, 114101 (2002)

    Google Scholar 

  12. E. Bogomolny, C. Schmit, Percolation model for nodal domains of chaotic wave functions. Phys. Rev. Lett. 88, 114102 (2002)

    Google Scholar 

  13. A.G. Monastra, U. Smilansky, S. Gnutzmann, Avoided intersections of nodal lines. J. Phys. A 36, 1845–1853 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. E. Bogomolny, C. Schmit, Random wave functions and percolation. J. Phys. A 40, 14033 (2007)

    Google Scholar 

  15. M.V. Berry, M.R. Dennis, Natural superoscillations in monochromatic waves in \(d\) dimensions. J. Phys. A 42, 022003 (2009)

    Google Scholar 

  16. A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica (CRC Press, 1997)

    Google Scholar 

  17. A.W. Baggaley, C.F. Barenghi, Spectrum of turbulent Kelvin-waves cascade in superfluid helium. Phys. Rev. E 83, 134509 (2011)

    Google Scholar 

  18. R.D. Kamien, The geometry of soft materials: a primer. Rev. Mod. Phys. 74, 953 (2002)

    Google Scholar 

  19. M.G. Bickis, The torsion of a three-dimensional random walk, eds. by S.G. Whittington, D.W. Sumners, T. Lodge Topology and Geometry in Polymer Science, pp. 23–28. (Springer, 1998). Chapter 5

    Google Scholar 

  20. B.K. Shivamoggi, G.J.F. van Heijst, Motion of a vortex filament in the local induction approximation: reformulation of the Da Rios-Betchov equations in the extrinsic filament coordinate space. Theor. Comp. Fluid Dyn. (2009)

    Google Scholar 

  21. O.D. Lavrentovich, P. Pasini, C. Zannoni, Defects in Liquid Crystals: Computer Simulations, Theory and Experiments (Springer Science and Business Media, 2001)

    Google Scholar 

  22. J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. Roy. Soc. A 336, 611–654 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.V. Berry, M.R. Dennis, Topological events on wave dislocation lines: birth and death of loops, and reconnection. J. Phys. A 40, 65–74 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. M.R. Dennis, Local phase structure of wave dislocation lines: twist and twirl. J. Opt. A 6, S202–5208 (2004)

    Article  ADS  Google Scholar 

  25. E. Orlandini, S.G. Whittington, Statistical topology of closed curves: some applications in polymer physics. Rev. Mod. Phys. 79, 611–642 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience Publishers, 1969)

    Google Scholar 

  27. P. Grassberger, On persistency in self-avoiding random walks. Phys. Rev. Lett. 89A(8), 382–4 (1982)

    Google Scholar 

  28. J.F. Nye, Local solutions for the interaction of wave dislocations. J. Phys. A 6, S251–S254 (2004)

    MathSciNet  Google Scholar 

  29. M.R. Dennis, K. O’Holleran, M.J. Pagdett, The fractal shape of speckled darkness. SPIE Proc. 6905, 69050C (2008)

    Google Scholar 

  30. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, chapter 3. (Wiley, 1997)

    Google Scholar 

  31. J.C. Le Guillou, J. Zinn-Justin, Critical exponents for the n-vector model in three dimensions from field theory. Phys. Rev. Lett. 39, 95–98 (1977)

    Article  ADS  Google Scholar 

  32. T. Vachaspati, A. Vilenkin, Formation and evolution of cosmic strings. Phys. Rev. D 30, 2036–2045 (1984)

    Article  ADS  Google Scholar 

  33. K. O’Holleran, M.R. Dennis, M.J. Padgett, Topology of light’s darkness. Phys. Rev. Lett. 102, 143902 (2009)

    Google Scholar 

  34. P.J. Flory, Statistical Mechanics of Chain Molecules (Oxford University Press, New York, 1988)

    Google Scholar 

  35. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)

    Google Scholar 

  36. J.P. Wittmer, P. Beckrich, A. Johner, A.N. Semenov, S.P. Obukhov, H. Meyer, J. Baschnagel, Why polymer chains in a melt are not random walks. EPL 77(5), 56003 (2007)

    Google Scholar 

  37. D. Kivotides, C.F. Barenghi, D.C. Samuels, Fractal dimension of superfluid turbulence. Phys. Rev. Lett. 87 (2001)

    Google Scholar 

  38. J.C. Vassilicos, J.G. Brasseur, Self-similar spiral flow structure in low Reynolds number isotropic and decaying turbulence. Phys. Rev. E 54, 467–485 (1996)

    Article  ADS  Google Scholar 

  39. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena. International series of monographs on physics, 2002 edn. (Oxford Science Publications, 2002)

    Google Scholar 

  40. G. Foltin, S. Gnutzmann, U. Smilansky, The morphology of nodal lines: random waves versus percolation. J. Phys. A 37, 11363–11372 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. D.A. Kessler, I. Freund, Short- and long-range screening of optical phase singularities and C points. Opt. Commun. 281, 4194–4204 (2008)

    Article  ADS  Google Scholar 

  42. A. Nahum, J.T. Chalker, P. Serna, M. Ortuno, A.M. Somoza, Length distributions in loop soups. Phys. Rev. Lett. 111, 100601 (2013a)

    Google Scholar 

  43. A. Nahum, J.T. Chalker, Universal statistics of vortex lines. Phys. Rev. E 85, 031141 (2012)

    Google Scholar 

  44. A. Vilenkin, Cosmic strings, eds. by G. Gibbons, S.W. Hawking, S.T.C. Siklos The Very Early Universe (Cambridge University Press, 1983)

    Google Scholar 

  45. M. Hindmarsh, K. Strobl, Statistical properties of strings. Nucl. Phys. B437, 471–488 (1995)

    Article  ADS  Google Scholar 

  46. M.B. Hindmarsh, T.W.B. Kibble, Cosmic strings. Rep. Prog. Phys. 58, 477–562 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  47. J. Robinson, A. Yates, Cosmic string formation and the power spectrum of field configurations. Phys. Rev. D 54(8), 5211–5216 (1996)

    Google Scholar 

  48. C. Goldschmidt, D. Ueltschi, P. Windridge, Quantum heisenberg models and their probabilistic representations. Contemp. Math. 552, 177 (2011)

    Google Scholar 

  49. S. Grosskinsky, A.A. Lovisolo, D. Ueltschi, Lattice permutations and Poisson-Dirichlet distribution of cycle lengths. J. Stat. Phys. 146, 1105–1121 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. A. Nahum, J.T. Chalker, P. Serna, M. Ortu no, A.M. Somoza, \(3\)D loop models and the \(CP^{n-1}\) sigma model. Phys. Rev. Lett. 117, 110601 (2011)

    Google Scholar 

  51. A. Nahum, J.T. Chalker, P. Serna, M. Ortuno, A.M. Somoza, Phase transitions in \(3\)d loop models and the \(cp^{n-1}\) \(\sigma \) model. Phys. Rev. B 88, 134411 (2013b)

    Google Scholar 

  52. J. Arsuaga, Y. Diao, M. Vazquez, Mathematical methods in dna topology: applications tochromosome organization and site-specific recombination, eds. C.J. Benham, S Harvey, W.K. Olson, D.W. Sumners, D. Swigon Mathematics of DNA Structure, Functions and Interactions, pp. 7–36 (Springer Science + Business Media, 2009a)

    Google Scholar 

  53. T. Edvinsson, C. Elvingson, G. Arteca, Variations in molecular compactness and chain entanglement during the compression of grafted polymers. Macromol. Theory Simul. 9, 398–406 (2000)

    Article  Google Scholar 

  54. F. Maggioni, S. Alamri, C.F. Barenghi, R.L. Ricca, Velocity, energy and helicity of vortex knots and unknots. Phys. Rev. E 82, 026309 (2010)

    Google Scholar 

  55. C.F. Barenghi, R.L. Ricca, D.C. Samuels, How tangled is a tangle? Physica D 157(3), 197–206 (2001)

    Google Scholar 

  56. G. Călugăreanu, L’intégral de Gauss et l’analyse des noeuds tridimensionnels. Rev. Math. Pures Appl. 4, 5–20 (1959)

    MathSciNet  Google Scholar 

  57. G. Călugăreanu, Sur les classes d’isotopie des noeuds tridimensionnels et leurs invariants. Czech Math. J. 11, 588–625 (1961)

    MathSciNet  MATH  Google Scholar 

  58. F.B. Fuller, The writhing number of a space curve. Proc. Nat. Acad. Sci. 68(4), 815–819 (1971)

    Google Scholar 

  59. J. White, Self-linking and the Gauss integral in higher dimensions. Am. J. Math. XCI, 693–728 (1969)

    Google Scholar 

  60. W.F. Pohl, The self-linking number of a closed space curve. J. Math. Mech. 17, 975–985 (1968)

    MathSciNet  MATH  Google Scholar 

  61. M.R. Dennis, J.H. Hannay, Geometry of Călugăreanu’s theorem. P. Roy. Soc. A 461(2062), 3245–3254 (2005)

    Google Scholar 

  62. H.K. Moffatt, R.L. Ricca, Helicity and the Călugăreanu invariant. P. Roy. Soc. A 439, 411–429 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. J.F. Hannay, J.F. Nye, Fibonacci numerical integration on a sphere. J. Phys. A 37, 11591 (2004)

    Google Scholar 

  64. E.A. Rakhmanov, E.B. Saff, Y.M. Zhou, Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  65. P.K. Agarwal, H. Edelsbrunner, Y. Wang, Computing the writhing number of a polygonal knot. In SODA ’02 Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 791–9 (2002)

    Google Scholar 

  66. Y. Diao, A. Dobay, R.B. Kusner, K. Millett, A. Stasiak, The average crossing number of equilateral random polygons. J. Phys. A 36, 11561 (2003)

    Google Scholar 

  67. E. Orlandini, M.C. Tesi, S.G. Whittington, D.W. Sumners, E.J. JAnse van Rensburg, The writhe of a self-avoiding walk. J. Phys. A 27, L333 (1994)

    Google Scholar 

  68. Y. Diao, A. Dobay, A. Stasiak, The average inter-crossing number of equilateral random alks and polygons. J. Phys. A 38, 7601–7616 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. J. Arsuaga, B. Borgo, Y. Diao, R. Sharein, The growth of the mean average crossing number of equilateral polygons in confinement. J. Phys. A 42, 465202 (2009b)

    Google Scholar 

  70. E.J. Janse van Rensburg, E. Orlandini, D.W. Sumners, M.C. Tesi, S.G. Whittington, The writhe of a self-avoiding polygon. J. Phys. A 26, L981 (1993)

    Google Scholar 

  71. S.M. Rappaport, Y. Rabin, A.Y. Grosberg, Worm-like polymer loops and Fourier knots. J. Phys. A 39, L507–L513 (2006)

    Google Scholar 

  72. D. Stauffer, A. Aharony, Introduction to Percolation Theory (CRC Press, 1994)

    Google Scholar 

  73. G. Grimmett, Percolation, Grundlehren der mathematischen (Springer, Berlin Heidelberg, 2010)

    Google Scholar 

  74. T.C.B. McLeish, Tube theory of entangled polymer dynamics. Adv. Phys. 51(6), 1379–527 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander John Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Taylor, A.J. (2017). Geometry and Scaling of Vortex Lines. In: Analysis of Quantised Vortex Tangle. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48556-0_3

Download citation

Publish with us

Policies and ethics