Skip to main content

Designing Integrated Biorefineries Using Process Systems Engineering Tools

  • Chapter
  • First Online:
Biorefineries

Part of the book series: Lecture Notes in Energy ((LNEN,volume 57))

Abstract

Biorefinery concept is now well established as an attractive production system for effectively converting lignocellulosic biomass . Sustainable design of biorefinery processes requires considering multiple criteria to analyze the performance of biorefinery from different perspectives. The focus of this chapter is on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools , which include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life-cycle assessment, supply chain analysis , as well as a multi-criteria decision- making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. The proposed methodology, aggregating the impacts into sustainability scores, is illustrated through a case study consisting of evaluating the potential of implementing black liquor lignin recovery process or fast pyrolysis within a Canadian softwood Kraft pulp mill with an annual pulp production capacity of approximately 330,000 air-dry-tons. These options are focusing on producing one to two types of Phenol Formaldehyde resins based on functional group and/or molecular structure modifications of recovered lignin.

Highlights

  • Multi-criteria methodology conceived for prefeasibility of integrated biorefineries

  • Set of sustainability metrics developed for designing integrated biorefineries

  • Bringing supply chain operational considerations to the strategic decision- making

  • Stepwise methodology developed for supply chain strategic design

  • Assessment methodology was demonstrated for lignin recovery and postprocessing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andiappan V, Ko ASY, Lau VWS, Ng LY, Ng RTL, Chemmangattuvalappil NG, Ng DKS (2015) Synthesis of sustainable integrated biorefinery via reaction pathway synthesis: economic, incremental enviromental burden and energy assessment with multiobjective optimization. AIChE J 61:132–146. doi:10.1002/aic.14616

    Article  Google Scholar 

  • Chambost V, Stuart PR (2007) Selecting the most appropriate products for the forest biorefinery. Ind Biotechnol 3:112–119

    Article  Google Scholar 

  • Chambost V, Stuart PR (2009) Product portfolio design for forest biorefinery implementation at an existing pulp and paper mill. In: El-Halwlagi MM, Linninger AA (eds) Proceedings of the 7th international on the foundations of computer-aided process design, pp 907–916

    Google Scholar 

  • Cohen J, Janssen M, Chambost V, Stuart PR (2010) Critical analysis of emerging forest biorefinery (FBR) technologies for ethanol production. Pulp Pap Can 111:24–30

    Google Scholar 

  • Dieudonné RB, Solvason CC, Sammons NE, Chambost V, Bilhartz DL, Eden MR, El-Halwagi MM, Stuart PR (2013) Product portfolio selection and process design for the forest biorefinery. In: Stuart PR, El-Halwagi MM (eds) Integrated biorefineries: design, analysis, and optimization. CRC Press, Taylor & Francis Group, New York, pp 3–35

    Google Scholar 

  • Hytönen E, Stuart PR (2010) Biofuel production in an integrated forest biorefinery—technology identification under uncertainty. J Biobased Mater Bioenergy 4:58–67. doi:10.1166/jbmb.2010.1066

    Article  Google Scholar 

  • Hytönen E, Stuart PR (2011) Techno-economic assessment and risk analysis of biorefinery processes. In: Pistikopoulos EN, Georgiadis MC, Kokossis AC (eds) Proceedings of the 21st European symposium on computer aided process engineering, pp 1376–1380

    Google Scholar 

  • Kasivisvanathan H, Ubando AT, Ng DKS, Tan RR (2014) Robust optimization for process synthesis and design of multifunctional energy systems with uncertainties. Ind Eng Chem Res 53:3196–3209. doi:10.1021/ie401824j

    Article  Google Scholar 

  • Kokossis AC (2014) Design of integrated biorefineries. Comput Aided Chem Eng 34:173–185. doi:10.1016/B978-0-444-63433-7.50018-3

    Article  Google Scholar 

  • Kokossis AC, Yang A (2010) On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Comput Chem Eng 34:1397–1405. doi:10.1016/j.compchemeng.2010.02.021

    Article  Google Scholar 

  • Mansoornejad B, Chambost V, Stuart PR (2010) Integrating product portfolio design and supply chain design for forest biorefinery. Comput Chem Eng 34:1497–1506. doi:10.1016/j.compchemeng.2010.02.004

    Article  Google Scholar 

  • Mansoornejad B, Pistikopoulos EN, Stuart PR (2013) Metrics for evaluating the forest biorefinery supply chain performance. Comput Chem Eng 54:125–139. doi:10.1016/j.compchemeng.2013.03.031

    Article  Google Scholar 

  • Munda G (1995) Multicriteria evaluation in a fuzzy environment: theory and applications in ecological economics. Physical Verlag, Heidelberg, Germany

    Book  MATH  Google Scholar 

  • Munda G, Nijkamp P, Rietveld P (1994) Qualitative multicriteria evaluation for environmental management. Ecol Econ 10:97–112

    Article  MATH  Google Scholar 

  • Othman MR, Repke JU, Wozny G, Huang Y (2010) A modular approach to sustainability assessment and decision support in chemical process design. Ind Eng Chem Res 49:7870–7881. doi:10.1021/ie901943d

    Article  Google Scholar 

  • Sammons NE Jr, Yuan W, Eden MR, Aksoy B, Cullinan HT (2008) Optimal biorefinery product allocation by combining process and economic modeling. Chem Eng Res Des 86:800–808. doi:10.1016/j.cherd.2008.03.004

    Article  Google Scholar 

  • Sanaei S (2014) Sustainability assessment of biorefinery strategies under uncertainty and risk using multi-criteria decision-making (MCDM) approach, Ecole Polytechnique de Montréal. Ph.D. thesis, available on https://publications.polymtl.ca/1423/ (Downloaded date: December 10th, 2015)

  • Sandin G, Røyne F, Berlin J, Peters GM, Svanstrom M (2015) Allocation in LCAs of biorefinery products: implications for results and decision-making. J Clean Prod 93:213–221. doi:10.1016/j.jclepro.2015.01.013

    Article  Google Scholar 

  • Santibañez-Aguilar JE, González-Campos JB, Ponce-Ortega JM, Serna-González M, El-Halwagi MM (2014) Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. J Clean Prod 65:270–294. doi:10.1016/j.jclepro.2013.08.004

    Article  Google Scholar 

  • Schaidle JA, Moline CJ, Savage PE (2010) Biorefinery sustainability assessment. Environ Prog Sustain 30:743–753. doi:10.1002/ep.10516

    Article  Google Scholar 

  • Sharma P, Sarker BR, Romagnoli JA (2011) Decision support tool for strategic planning of sustainable biorefineries. Comput Chem Eng 35:1767–1781. doi:10.1016/j.compchemeng.2011.05.011

    Article  Google Scholar 

  • Sharma P, Vlosky R, Romagnoli JA (2013) Strategic value optimization and analysis of multi-product biomass refineries with multiple stakeholder considerations. Comput Chem Eng 50:105–129. doi:10.1016/j.compchemeng.2012.10.010

    Article  Google Scholar 

  • Sugiyama H, Fischer U et al (2008) Decision framework for chemical process design including different stages of environmental, health, and safety assessment. AIChE J 54:1037–1053. doi:10.1002/aic.11430

    Article  Google Scholar 

  • Sukumara S, Amundson J, Faulkner W, Badurdeen F, Seay J (2012) Multidisciplinary approach in developing region specific optimization tool for sustainable biorefining. Comput Aided Chem Eng 30:157–161. doi:10.1016/B978-0-444-59519-5.50032-0

    Article  Google Scholar 

  • Zhang Q, Gong J, Skwarczek M, Yue D, You F (2014) Sustainable process design and synthesis of hydrocarbon biorefinery through fast pyrolysis and hydroprocessing. AIChE J 60:980–994. doi:10.1002/aic.14344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzouk Benali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mansoornejad, B., Sanaei, S., Gilani, B., Batsy, D.R., Benali, M., Stuart, P.R. (2017). Designing Integrated Biorefineries Using Process Systems Engineering Tools. In: Rabaçal, M., Ferreira, A., Silva, C., Costa, M. (eds) Biorefineries. Lecture Notes in Energy, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-48288-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48288-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48286-6

  • Online ISBN: 978-3-319-48288-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics