Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 308 Accesses

Abstract

Numerical simulations of material behaviour under load are based on the principles of continuum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akarca, S.S., X. Song, W.J. Altenhof, and A.T. Alpas. 2008. Deformation behavior of aluminium during machining: Modelling by Eulerian and smoothed particle hydrodynamics methods. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 222(3): 209–221.

    Google Scholar 

  • Ansys Inc. 2012. ‘AUTODYN user manual’. 14.5. Canonsburg, PA: Ansys Inc.

    Google Scholar 

  • Barnes, J., and P. Hut. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature 324(6096): 446–449.

    Google Scholar 

  • Benz, W.W., and E. Asphaug. 1995. Simulations of brittle solids using smooth particle hydrodynamics. Computer Physics Communications 87(1): 253–265.

    Google Scholar 

  • Beuermann, K., S. Dreizler, F.V. Hessman, and J.F. Deller. 2012. The quest for companions to post-common envelope binaries. III. A reexamination of HW Virginis. Astronomy and Astrophysics 543: 138.

    Article  ADS  Google Scholar 

  • Birnbaum, N.K., M. Cowler, and C.J. Hayhurst. 1996. Numerical simulation of impact using AUTODYN. http://hsrlab.gatech.edu/AUTODYN/papers/paper70.pdf.

  • Burbine, T.H., A. Meibom, and R.P. Binzel. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science 31(5): 607–620.

    Google Scholar 

  • Capuzzo-Dolcetta, R., M. Spera, and D. Punzo. 2013. A fully parallel, high precision, N-body code running on hybrid computing platforms. Journal of Computational Physics 236: 580–593.

    Article  ADS  MathSciNet  Google Scholar 

  • Century Dynamics Ltd. 2000. Theory manual. West Sussex: Century Dynamics Ltd.

    Google Scholar 

  • Chambers, J.E. 1999. A hybrid symplectic integrator that permits close encounters between massive bodies. Monthly Notices of the Royal Astronomical Society 304(4): 793–799.

    Google Scholar 

  • Collins, G.S. 2014. Numerical simulations of impact crater formation with dilatancy. Journal of Geophysical Research (Planets) 119(12): 2600–2619.

    Google Scholar 

  • Collins, G.S., and H.J. Melosh. 2014. Improvements to ANEOS for multiple phase transitions. In 45th lunar and planetary science conference.

    Google Scholar 

  • Collins, G.S., H.J. Melosh, and B.A. Ivanov. 2004. Modeling damage and deformation in impact simulations. Meteoritics & Planetary Science 39: 217–231.

    Article  ADS  Google Scholar 

  • Collins, G.S., H.J. Melosh, and K. Wünnemann. 2011. Improvements to the \(\epsilon \)-\(\alpha \); porous compaction model for simulating impacts into high-porosity solar system objects. International Journal of Impact Engineering 38(6): 434–439.

    Google Scholar 

  • Collins, G.S., K. Wünnemann, N.A. Artemieva, and E. Pierazzo. 2012. Numerical modelling of impact processes. In Impact cratering, 254–270. London: Wiley. ISBN 9781118447307.

    Google Scholar 

  • Deller, J.F. 2012. ‘Parameters, Stability, and Dynamics of Circumbinary Planetary Systems’. M. Sc. thesis. Göttingen: Institut für Astrophysik Göttingen.

    Google Scholar 

  • Dikaiakos, M.D., and J. Stadel. 1997. A performance study of cosmological simulations on message-passing and shared-memory multiprocessors. In 10th ACM international conference on supercomputing, 94–101. New York, NY: ACM Press. ISBN 0897918037.

    Google Scholar 

  • Duncan, M.J., H.F. Levison, and M.H. Lee. 1998. A multiple time step symplectic algorithm for integrating close encounters. The Astronomical Journal 116(4): 2067–2077.

    Google Scholar 

  • Faraud, M., R. Destefanis, D. Palmieri, and M. Marchetti. 1999. SPH simulations of debris impacts using two different computer codes. International Journal of Impact Engineering 23(1): 249–260.

    Google Scholar 

  • Gingold, R.A., and J.J. Monaghan. 1977. Smoothed particle hydrodynamics—Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181: 375–389.

    Article  ADS  MATH  Google Scholar 

  • Goyal, V.K., C.A. Huertas, and T.J. Vasko. 2014. Smooth particle hydrodynamics for bird-strike analysis using LS-DYNA. American Transactions on Engineering & Applied Sciences 2(2): 83–107.

    Google Scholar 

  • Grady, D.E., and M.E. Kipp. 1980. Continuum modelling of explosive fracture in oil shale. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 17(3): 147–157.

    Google Scholar 

  • Grüneisen, E. 1912. Theorie des festen Zustandes einatomiger Elemente. German. Annalen der Physik 344(12): 257–306.

    Google Scholar 

  • Hageman, L.J., and J.M. Walsh. 1971. HELP, a multi-material Eulerian program for compressible fluid and elastic-plastic flows in two space dimensions and time, vol. 1. Technical report AD726459. La Jolla, CA: Systems Science and Software.

    Google Scholar 

  • Hayhurst, C.J., and R.A. Clegg. 1997. Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. International Journal of Impact Engineering 20(1-5): 337–348.

    Google Scholar 

  • Hernquist, L. 1987. Performance characteristics of tree codes. Astrophysical Journal Supplement Series 64: 715–734. ISSN 0067-0049

    Google Scholar 

  • Holsapple, K.A. 2009. On the “strength” of the small bodies of the solar system: A review of strength theories and their implementation for analyses of impact disruptions. Planetary and Space Science 57(2): 127–141.

    Google Scholar 

  • Housen, K.R., and K.A. Holsapple. 1999. Scale effects in strength-dominated collisions of rocky asteroids. Icarus 142(1): 21–33.

    Google Scholar 

  • Ivanov, B.A. 2003. Modification of ANEOS for rocks in compression. In: Workshop on impact cratering: Bridging the gap between modeling and observations, p. 40.

    Google Scholar 

  • Ivanov, B.A., D. Deniem, and G. Neukum. 1997. Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric breakup and impact cratering. International Journal of Impact Engineering 20(1): 411–430.

    Google Scholar 

  • Lacome, J.L. 2000. Smooth particle hydrodynamics (SPH): A new feature in LS-DYNA. In 6th international LS-DYNA users conference, 7-30–7-36.

    Google Scholar 

  • Libersky, L.D., and A.G. Petschek. 1991. Smooth particle hydrodynamics with strength of materials. In Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method, ed. H.E. Trease, M.F. Fritts and W.P. Crowley, 248–257.

    Google Scholar 

  • Livermore Software Technology Corporation. 2006. LS-DYNA theory manual—March 2006, 971st ed. Livermore, CA: Livermore Software Technology Corporation, New Mexico institute of mining and technology, New Mexico. ISBN 0-9778540-0-0.

    Google Scholar 

  • Lucy, L.B. 1977. A numerical approach to the testing of the fission hypothesis. Astronomical Journal 82: 1013–1024.

    Article  ADS  Google Scholar 

  • Malvern, L.E. 1969. Introduction to the mechanics of a continuous medium. Englewood Cliffs, NJ: Prentice-Hall. ISBN 134876032.

    Google Scholar 

  • Marsh, S.P. 1980. LASL Shock Hugoniot Data. Oakland: Univ of California Press.

    Google Scholar 

  • McGlaun, J.M., S.L. Thompson, and M.G. Elrick. 1990. CTH: A threedimensional shock wave physics code. International Journal of Impact Engineering 10(1-4): 351–360.

    Google Scholar 

  • McQueen, R.G., S.P. Marsh, and J.N. Fritz. 1967. Hugoniot equation of state of twelve rocks. Journal of Geophysical Research 72: 4999.

    Article  ADS  Google Scholar 

  • Melosh, H.J. 2007. A hydrocode equation of state for SiO\(_2\). Meteoritics & Planetary Science 42(1): 2079–2098.

    Google Scholar 

  • Melosh, H.J., E.V. Ryan, and E. Asphaug. 1992. Dynamic fragmentation in impacts—Hydrocode simulation of laboratory impacts. Journal of Geophysical Research 97: 14735. ISSN 0148-0227.

    Google Scholar 

  • Merz, H., U.-L. Pen, and H. Trac. 2005. Towards optimal parallel PM N-body codes: PMFAST. New Astronomy 10(5): 393–407.

    Google Scholar 

  • Mie, G. 1903. Zur kinetischen Theorie der einatomigen Körper. German. Annalen der Physik 316(8): 657–697.

    Google Scholar 

  • Monaghan, J.J. 1988. An introduction to SPH. Computer Physics Communications 48(1): 89–96.

    Google Scholar 

  • Morris, A.J.W., M.J. Burchell, M.C. Price, and M.J. Cole. 2013b. Rotationally dependant catastrophic disruption: Light gas gun and SPH hydrocode experiments. In 8th workshop on catastrophic disruption in the solar system, 1–2. Hawaii.

    Google Scholar 

  • Pierazzo, E., N.A. Artemieva, E. Asphaug, E.C. Baldwin, J. Cazamias, R. Coker, G.S. Collins, D.A. Crawford, T.M. Davison, D. Elbeshausen, K.A. Holsapple, K.R. Housen, D.G. Korycansky, and K. Wünnemann. 2008. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets. Meteoritics & Planetary Science 43(1): 1917–1938.

    Google Scholar 

  • Price, M.C., A.T. Kearsley, M.J. Burchell, L.E. Howard, J.K. Hillier, N.A. Starkey, P.J. Wozniakiewicz, and M.J. Cole. 2012. Stardust interstellar dust calibration: Hydrocode modeling of impacts on Al-1100 foil at velocities up to 300 km s\(^{-1}\) and validation with experimental data. Meteoritics & Planetary Science 47(4): 684–695.

    Google Scholar 

  • Schwer, L.E. 2004. Preliminary assessment of non-Lagrangian methods for penetration simulation. In 8th international LS-DYNA users conference, 8-1–8-12, Dearborn, MI.

    Google Scholar 

  • Stellingwerf, R.F., and C.A. Wingate. 1994. Impact modelling with SPH. Memorie della Società Astronomia Italiana 65: 1117.

    ADS  Google Scholar 

  • Swegle, J.W., S.W. Attaway, M.W. Heinstein, F.J.S.N.L. Mello, and D.L.M.T.U. Hicks. 1994. An analysis of smoothed particle hydrodynamics. Technical report.

    Google Scholar 

  • Thompson, S.L. 1990. ANEOS analytic equations of state for shock physics codes input manual. Sandia report SAND89-2951.

    Google Scholar 

  • Tillotson, J.H. 1962. Metallic equations of state for hypervelocity impact. Technical report AD486711.

    Google Scholar 

  • Tsiganis, K., R. Gomes, A. Morbidelli, and H.F. Levison. 2005. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435(7041): 459–461.

    Google Scholar 

  • von Hoerner, S. 1960. Die numerische Integration des n-Körper-Problemes für Sternhaufen. I. German. Zeitschrift für Astrophysik 50: 184–214.

    ADS  MATH  Google Scholar 

  • von Hoerner, S. 2001. How it all started. In Dynamics of star clusters and the Milky Way, ed. S. Deiters, B. Fuchs, A. Just, R. Spurzem and R. Wielen, ASP conference series, 228, 1–6.

    Google Scholar 

  • Weibull, W. 1939. A Statistical theory of strength of materials. Generalstabens Litografiska Anstalts Förl. 45.

    Google Scholar 

  • Wünnemann, K., G.S. Collins, and H.J. Melosh. 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180(2): 514–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Deller .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deller, J. (2017). Methods. In: Hyper-Velocity Impacts on Rubble Pile Asteroids. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-47985-9_2

Download citation

Publish with us

Policies and ethics