Skip to main content

Nano-Micro Polymeric Structures with Antimicrobial Activity in Solution

  • Chapter
  • First Online:
Polymers against Microorganisms
  • 1033 Accesses

Abstract

Pioneer strategies to combat infectious diseases focused on the improvement of pharmacokinetics of the antibiotics by prolonging their blood circulation. These initial approaches permitted the antibiotic to reach difficult-to-target sites of infection and, as a consequence, to reduce dose frequency of antibiotics and more interestingly to reduce undesired rapid clearance of therapeutic agents. However, this strategy can only be accomplished in combination of the advancement of the appropriate techniques both in chemical synthesis and the understanding of macromolecular chemistry.

This chapter describes the alternatives to fabricate nanometer scale polymeric structures with antimicrobial properties. In particular, we will describe the different alternatives developed to produce efficient antimicrobial polymer nanostructures in solution.

Organic (based on polymers) or hybrid inorganic/organic nanostructures have peculiar properties that distinguish them from materials structured at the micro scale. In particular, their large surface area to volume ratio may enhance the interaction of the nanostructured material with a given microbe as a result of a larger number of functional sites. The most studied antimicrobial nanostructures in solution are nanoparticles and within nanoparticles those made of silver have been extensively explored.

Moreover, antimicrobial polymers and, in particular, the nanostructures resulting from the self-assembly processes in solution has been recently demonstrated to be of interest for different applications including animal and human health care. Of particular interest are those cases in which the polymers form self-assembled nanostructures with a large concentration of antimicrobial moieties. Moreover, these self-assembled structures are able to incorporate other additional antimicrobials such as silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vij N. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin Drug Deliv. 2011;8(9):1105–9.

    Article  Google Scholar 

  2. Toti US, Guru BR, Hali M, McPharlin CM, Wykes SM, Panyam J, Whittum-Hudson JA. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011;32(27):6606–13.

    Article  Google Scholar 

  3. Ghaffari S, Varshosaz J, Saadat A, Atyabi F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int J Nanomedicine. 2011;6:35–43.

    Google Scholar 

  4. Shegokar R, Al Shaal L, Mitri K. Present status of nanoparticle research for treatment of tuberculosis. J Pharm Pharm Sci. 2011;14(1):100–16.

    Article  Google Scholar 

  5. Kumar G, Sharma S, Shafiq N, Pandhi P, Khuller GK, Malhotra S. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv. 2011;18(1):65–73.

    Article  Google Scholar 

  6. Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–45.

    Article  Google Scholar 

  7. Engler AC, Wiradharma N, Ong ZY, Coady DJ, Hedrick JL, Yang Y-Y. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today. 2012;7(3):201–22.

    Article  Google Scholar 

  8. Chen J, Wang F, Liu Q, Du J. Antibacterial polymeric nanostructures for biomedical applications. Chem Commun. 2014;50(93):14482–93.

    Article  Google Scholar 

  9. Calabretta MK, Kumar A, McDermott AM, Cai C. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules. 2007;8(6):1807–11.

    Article  Google Scholar 

  10. Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol Biosyst. 2009;5(10):1148–56.

    Article  Google Scholar 

  11. Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules. 2000;1(3):473–80.

    Article  Google Scholar 

  12. Chen CZS, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23(16):3359–68.

    Article  Google Scholar 

  13. Song A, Walker SG, Parker KA, Sampson NS. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem Biol. 2011;6(6):590–9.

    Article  Google Scholar 

  14. Carmona-Ribeiro A, de Melo Carrasco L. Cationic antimicrobial polymers and their assemblies. Int J Mol Sci. 2013;14(5):9906.

    Article  Google Scholar 

  15. Ilker MF, Schule H, Coughlin EB. Modular norbornene derivatives for the preparation of well-defined amphiphilic polymers: study of the lipid membrane disruption activities. Macromolecules. 2004;37(3):694–700.

    Article  Google Scholar 

  16. Ilker MF, Nüsslein K, Tew GN, Coughlin EB. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004;126(48):15870–5.

    Article  Google Scholar 

  17. Venkataraman S, Zhang Y, Liu L, Yang Y-Y. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials. 2010;31(7):1751–6.

    Article  Google Scholar 

  18. Moffitt M, Khougaz K, Eisenberg A. Micellization of ionic block copolymers. Acc Chem Res. 1996;29(2):95–102.

    Article  Google Scholar 

  19. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–88.

    Article  Google Scholar 

  20. Israelachvili JN. Intermolecular and surface forces: with applications to colloidal and biological systems. London: Academic; 1985.

    Google Scholar 

  21. Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K. Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules. 2011;12(10):3581–91.

    Article  Google Scholar 

  22. Qiao Y, Yang C, Coady DJ, Ong ZY, Hedrick JL, Yang Y-Y. Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane. Biomaterials. 2012;33(4):1146–53.

    Article  Google Scholar 

  23. Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang Y-Y. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem. 2011;3(5):409–14.

    Article  Google Scholar 

  24. Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol. 2009;4(7):457–63.

    Article  Google Scholar 

  25. Yao D, Guo Y, Chen S, Tang J, Chen Y. Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation. Polymer. 2013;54(14):3485–91.

    Article  Google Scholar 

  26. Sun Z, Li Y, Guan X, Chen L, Jing X, Xie Z. Rational design and synthesis of covalent organic polymers with hollow structure and excellent antibacterial efficacy. RSC Adv. 2014;4(76):40269–72.

    Article  Google Scholar 

  27. Yadav S, Mahato M, Pathak R, Jha D, Kumar B, Deka SR, Gautam HK, Sharma AK. Multifunctional self-assembled cationic peptide nanostructures efficiently carry plasmid DNA in vitro and exhibit antimicrobial activity with minimal toxicity. J Mater Chem B. 2014;2(30):4848–61.

    Article  Google Scholar 

  28. Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343–8.

    Article  Google Scholar 

  29. Lu H, Fan L, Liu Q, Wei J, Ren T, Du J. Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym Chem. 2012;3(8):2217–27.

    Article  Google Scholar 

  30. Xu J, Han X, Liu HL, Hu Y. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids Surf A Physicochem Eng Asp. 2006;273(1–3):179–83.

    Article  Google Scholar 

  31. Lu H, Yu L, Liu Q, Du J. Ultrafine silver nanoparticles with excellent antibacterial efficacy prepared by a handover of vesicle templating to micelle stabilization. Polym Chem. 2013;4(12):3448–52.

    Article  Google Scholar 

  32. Zou K, Liu Q, Chen J, Du J. Silver-decorated biodegradable polymer vesicles with excellent antibacterial efficacy. Polym Chem. 2014;5(2):405–11.

    Article  Google Scholar 

  33. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6(5):1388–401.

    Article  Google Scholar 

  34. Morikawa M-A, Kim K, Kinoshita H, Yasui K, Kasai Y, Kimizuka N. Aqueous nanospheres self-assembled from hyperbranched polymers and silver ions: molecular inclusion and photoreduction characteristics. Macromolecules. 2010;43(21):8971–6.

    Article  Google Scholar 

  35. Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules. 2013;14(4):1103–12.

    Article  Google Scholar 

  36. Song J, Jang J. Antimicrobial polymer nanostructures: synthetic route, mechanism of action and perspective. Adv Colloid Interface Sci. 2014;203:37–50.

    Article  Google Scholar 

  37. de Azeredo HMC. Antimicrobial nanostructures in food packaging. Trends Food Sci Technol. 2013;30(1):56–69.

    Article  Google Scholar 

  38. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65.

    Article  Google Scholar 

  39. Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE. Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem. 2005;53(10):3888–94.

    Article  Google Scholar 

  40. Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym. 2009;76(1):17–22.

    Article  Google Scholar 

  41. Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693–700.

    Article  Google Scholar 

  42. Natan M, Gutman O, Lavi R, Margel S, Banin E. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria. ACS Nano. 2015;9(2):1175–88.

    Article  Google Scholar 

  43. Cai Q, Bao S, Zhao Y, Zhao T, Xiao L, Gao G, Chokto H, Dong A. Tailored synthesis of amine N-halamine copolymerized polystyrene with capability of killing bacteria. J Colloid Interface Sci. 2015;444:1–9.

    Article  Google Scholar 

  44. Song J, Kong H, Jang J. Enhanced antibacterial performance of cationic polymer modified silica nanoparticles. Chem Commun. 2009;36:5418–20.

    Article  Google Scholar 

  45. Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V. Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol. 2007;7(9):2994–3010.

    Article  Google Scholar 

  46. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother. 2004;54(6):1019–24.

    Article  Google Scholar 

  47. Kong H, Song J, Jang J. Photocatalytic antibacterial capabilities of TiO2-biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ Sci Technol. 2010;44(14):5672–6.

    Article  Google Scholar 

  48. Zhang G, Liu Y, Morikawa H, Chen Y. Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose. 2013;20(4):1877–84.

    Article  Google Scholar 

  49. Xu HY, Qu F, Xu H, Lai WH, Wang YA, Aguilar ZP, Wei H. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals. 2012;25(1):45–53.

    Article  Google Scholar 

  50. Cheng Z, Zhu X, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Ind Eng Chem Res. 2005;44(18):7098–104.

    Article  Google Scholar 

  51. Zhenping C, Xiulin Z, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization of 4-vinylpyridine and quaternization. Surf Rev Lett. 2006;13(2–3):313–8.

    Google Scholar 

  52. Ravindra S, Varaprasad K, Reddy NN, Vimala K, Raju KM. Biodegradable microspheres for controlled release of an antibiotic ciprofloxacin. J Polym Environ. 2011;19(2):413–8.

    Article  Google Scholar 

  53. Zheng J, Tian X, Sun Y, Lu D, Yang W. pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Int J Pharm. 2013;450(1–2):296–303.

    Article  Google Scholar 

  54. Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.

    Article  Google Scholar 

  55. Dizman B, Elasri MO, Mathias LJ. Synthesis and characterization of antibacterial and temperature responsive methacrylamide polymers. Macromolecules. 2006;39(17):5738–46.

    Article  Google Scholar 

  56. Chen B-K, Lo S-H, Lee S-F. Temperature responsive methacrylamide polymers with antibacterial activity. Chin J Polym Sci. 2010;28(4):607–13.

    Article  Google Scholar 

  57. Liu SJ, Qiao SL, Li LL, Qi GB, Lin YX, Qiao ZY, Wang H, Shao C. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology. 2015;26(49):12.

    Google Scholar 

  58. Feng LH, Zhu CL, Yuan HX, Liu LB, Lv FT, Wang S. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev. 2013;42(16):6620–33.

    Article  Google Scholar 

  59. Chong H, Nie C, Zhu C, Yang Q, Liu L, Lv F, Wang S. Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. Langmuir. 2012;28(4):2091–8.

    Article  Google Scholar 

  60. Xing C, Xu Q, Tang H, Liu L, Wang S. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J Am Chem Soc. 2009;131(36):13117–24.

    Article  Google Scholar 

  61. Zhang C, Zhu Y, Zhou C, Yuan W, Du J. Antibacterial vesicles by direct dissolution of a block copolymer in water. Polym Chem. 2013;4(2):255–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez-Hernández, J. (2017). Nano-Micro Polymeric Structures with Antimicrobial Activity in Solution. In: Polymers against Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-47961-3_4

Download citation

Publish with us

Policies and ethics