Skip to main content

Understanding Auditory Processing Disorder Through the FFR

  • Chapter
  • First Online:
The Frequency-Following Response

Abstract

This chapter gives an overview of the importance of auditory processing for successful language learning and describes assessment measures that are not influenced by factors such as alertness and fatigue. The frequency-following response (FFR) to speech is similar to the evoking stimulus both acoustically and visually, that is, it has good accuracy in encoding specific speech features. Thus, FFR can assess sound processing to an extent that is not possible with slower, cortical potentials such as the middle latency response (MLR) and late latency responses. The fidelity of the FFR to the stimulus enables the evaluation of the strength of subcortical encoding of multiple acoustic aspects of complex sounds, including timing, pitch, and harmonics. Taken as a whole, FFR to speech shows patterns in subcomponents of the FFR that are associated with clinical populations. These distinct patterns of neural processing are described and possible mechanisms underlying abnormalities of the FFR associated with auditory processing disorders are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AAA (American Academy of Audiology). (2010). American Academy of Audiology clinical practice guidelines: Diagnosis, treatment and management of children and adults with central auditory processing disorder. American Academy of Audiology. http://audiology-web.s3.amazonaws.com/migrated/CAPD%20Guidelines%208-2010.pdf_539952af956c79.73897613.pdf. (Accessed on October 8, 2015)

  • ASLHA. (2005). (Central) auditory processing disorders. Technical Report. American Speech-Language-Hearing Association. Doi:10.1044/policy.PS2005-00114

  • Aiken, S. J., & Picton, T. W. (2008). Envelope and spectral frequency-following responses to vowel sounds. Hearing Research, 245(1), 35–47.

    Article  PubMed  Google Scholar 

  • Akhoun, I., Gallego, S., Moulin, A., Ménard, M., et al. (2008). The temporal relationship between speech auditory brain stem responses and the acoustic pattern of the phoneme/ba/ in normal-hearing adults. Clinical Neurophysiology, 119(4), 922–933.

    Article  CAS  PubMed  Google Scholar 

  • Ali, A. A., & Jerger, J. (1992). Phase coherence of the middle-latency response in the elderly. Scandinavian Audiology, 21(3), 187–194.

    Article  CAS  PubMed  Google Scholar 

  • Ananthanarayan, A. K., & Durrant, J. D. (1992). The frequency following response and the onset response: Evaluation of frequency specificity using a forward-masking paradigm. Ear and Hearing, 13(4), 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, S., Parbery-Clark, A., Yi, H., & Kraus, N. (2011). A neural basis of speech-in-noise perception in older adults. Ear and Hearing, 32(6), 750–757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2012). Aging affects neural precision of speech encoding. The Journal of Neuroscience, 32(41), 14156–14164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, S., White-Schwoch, T., Choi, H. J., & Kraus, N. (2013). Training changes processing of speech cues in older adults with hearing loss. Frontiers in Systems Neuroscience, 7(97). Doi:10.3389/fnsys.2013.00097

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2015). Development of subcortical speech representation in infant humans. Journal of the Acoustical Society of America, 137(6), 3346–3355.

    Article  PubMed  PubMed Central  Google Scholar 

  • BSA (British Society of Audiology). (2011). Auditory processing disorder. Position statement. British Society of Audiology. http://www.thebsa.org.uk/wpcontent/uploads/2014/04/BSA_APD_PositionPaper_31March11_FINAL.pdf (Accessed October 8, 2015).

  • Bachorowski, J. A., & Owren, M. J. (1999). Acoustic correlates of talker sex and individual talker identity are present in a short vowel segment produced in running speech. The Journal of the Acoustical Society of America, 106(2), 1054–1063.

    Article  CAS  PubMed  Google Scholar 

  • Banai, K., & Kraus, N. (2014). Auditory processing (disorder): An intersection of cognitive, sensory and reward circuits. In F. E. Musiek & G. D. Chermak (Eds.), Handbook of central auditory processing disorder (pp. 191–210). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Banai, K., Nicol, T., Zecker, S., & Kraus, N. (2005). Brain stem timing: Implications for cortical processing and literacy. The Journal of Neuroscience, 25(43), 9850–9857.

    Article  CAS  PubMed  Google Scholar 

  • Banai, K., Hornickel, J. M., Skoe, E., Nicol, T., et al. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19(11), 2699–2707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer, P., Burger, M., Kummer, P., Lohscheller, J., et al. (2009). Correlation between psychometric tests and mismatch negativity in preschool children. Folia Phoniatrica et Logopaedica, 61(4), 206–216.

    Article  PubMed  Google Scholar 

  • Bellis, T. J. (2007). Historical foundations and the nature of (central) auditory processing disorder. In G. D. Chermak & F. E. Musiek (Eds.), Handbook of (central) auditory processing disorder: Auditory neuroscience and clinical diagnosis (pp. 119–136). San Diego: Plural Publishing.

    Google Scholar 

  • Bellis, T. J., & Bellis, J. D. (2015). Central auditory processing disorders in children and adults. In G. G. Celesia & G. Hickok (Eds.), Handbook of clinical neurology. The human auditory system (pp. 537–556). London: Elsevier.

    Google Scholar 

  • Bidelman, G. M., & Krishnan, A. (2010). Effects of reverberation on brainstem representation of speech in musicians and non-musicians. Brain Research, 1355, 112–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billiet, C. R., & Bellis, T. J. (2011). The relationship between brain stem temporal processing and performance on tests of central auditory function in children with reading disorders. Journal of Speech, Language, and Hearing Research, 54(1), 228–242.

    Article  PubMed  Google Scholar 

  • Blackburn, C. C., & Sachs, M. B. (1990). The representations of the steady-state vowel sound/e/in the discharge patterns of cat anteroventral cochlear nucleus neurons. Journal of Neurophysiology, 63(5), 1191–1212.

    CAS  PubMed  Google Scholar 

  • Blumstein, S. E., & Stevens, K. N. (1979). Acoustic invariance in speech production: Evidence from the spectral characteristics of stop consonants. The Journal of the Acoustical Society of America, 66(4), 1001–1017.

    Article  CAS  PubMed  Google Scholar 

  • Bocca, E., Calearo, C., & Cassinari, V. A. (1954). New method for testing hearing in temporal lobe tumors: Preliminary report. Acta Oto-Laryngologica, 44(3), 219–221.

    Article  CAS  PubMed  Google Scholar 

  • Boscariol, M., Guimaraes, C. A., Hage, S. R. V., Garcia, V. L., et al. (2011). Auditory processing disorder in patients with language-learning impairment and correlation with malformation of cortical development. Brain & Development, 33(10), 824–831.

    Article  Google Scholar 

  • Chambers, R., Feth, L., & Burns, E. (1986). The relation between the human frequency following response and the low pitch of complex tones. The Journal of the Acoustical Society of America, 80, 1673–1680.

    Article  CAS  Google Scholar 

  • Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brain stem response to speech: Neural origins and plasticity. Psychophysiology, 47(2), 236–246.

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2007). Experience-dependent neural plasticity is sensitive to shape of pitch contours. Neuroreport, 18(18), 1963–1967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chermak, G., & Musiek, F. (1997). Central auditory processing disorders: New perspectives. San Diego, CA: Singular.

    Google Scholar 

  • Chermak, G. D., & Musiek, F. E. (2014). Neurological substrate of central auditory processing disorder. In F. E. Musiek & G. D. Chermak (Eds.), Handbook of central auditory processing disorder (pp. 89–112). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Cruttenden, A. (1997). Intonation (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Cunningham, J., Nicol, T., Zecker, S. G., Bradlow, A., & Kraus, N. (2001). Neurobiologic responses to speech in noise in children with learning problems: Deficits and strategies for improvement. Clinical Neurophysiology, 112(5), 758–767.

    Article  CAS  PubMed  Google Scholar 

  • Davis, P. A. (1939). Effects of acoustic stimuli on the waking human brain. Journal of Neurophysiology, 2(6), 494–499.

    Google Scholar 

  • Dawes, P., Bishop, D. V. M., Sirimanna, T., & Bamiou, D. E. (2008). Profile and aetiology of children diagnosed with auditory processing disorder (APD). International Journal of Pediatric Otorhinolaryngology, 72(4), 483–489.

    Article  PubMed  Google Scholar 

  • Delattre, P. C., Liberman, A. M., & Cooper, F. S. (1955). Acoustic loci and transitional cues for consonants. The Journal of the Acoustical Society of America, 27(4), 769–773.

    Article  Google Scholar 

  • Delgutte, B. (1980). Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers. The Journal of the Acoustical Society of America, 68(3), 843–857.

    Article  CAS  PubMed  Google Scholar 

  • Escera, C., Yago, E., Polo, M. D., & Grau, C. (2000). The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clinical Neurophysiology, 111(3), 546–511.

    Article  CAS  PubMed  Google Scholar 

  • Filippini, R., & Schochat, E. (2009). Brainstem evoked auditory potentials with speech stimulus in the auditory processing disorder. Brazilian Journal of Otorhinolaryngology, 75(3), 449–455.

    Article  PubMed  Google Scholar 

  • Fischer, C., & Luauté, J. (2005). Evoked potentials for the prediction of vegetative state in the acute stage of coma. Neuropsychological Rehabilitation, 15(3–4), 372–380.

    Article  PubMed  Google Scholar 

  • Galbraith, G. C., Arbagey, P. W., Branski, R., Comerci, N., & Rector, P. M. (1995). Intelligible speech encoded in the human brain stem frequency-following response. Neuroreport, 6(17), 2363–2367.

    Article  CAS  PubMed  Google Scholar 

  • Gelfand, S. A. (2010). Auditory nerve. In S. A. Gelfand (Ed.), Hearing: An introduction to psychological and physiological acoustics (5th ed., pp. 103–121). London: Informa Healthcare.

    Google Scholar 

  • Greenberg, S., & Marsh, J. T. (1979). Spectral basis of human frequency-following response to the missing fundamental. The Journal of the Acoustical Society of America, 66, s33. (Abstract)

    Google Scholar 

  • Greenberg, S., Marsh, J. T., Brown, W. S., & Smith, J. C. (1987). Neural temporal coding of low pitch. I. Human frequency-following responses to complex tones. Hearing Research, 25(2), 91–114.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. W., III, & Johnson, K. (2007). Electroacoustic and electrophysiologic auditory measures in the assessment of (C)APD. In G. D. Chermak & F. E. Musiek (Eds.), Handbook of (central) auditory processing disorder: Auditory neuroscience and clinical diagnosis (pp. 287–315). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Hall, J. W., III. (2015). eHandbook of auditory evoked responses: Principles, procedures & protocols. St. Augustine, FL: Pearson Education, Inc.

    Google Scholar 

  • He, S., Grose, J. H., & Buchman, C. A. (2012). Auditory discrimination: The relationship between psychophysical and electrophysiological measures. International Journal of Audiology, 51(10), 771–782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. The Journal of Neuroscience, 33(8), 3500–3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornickel, J., Knowles, E., & Kraus, N. (2012a). Test-retest consistency of speech-evoked auditory brain stem responses in typically-developing children. Hearing Research, 284(1–2), 52–55.

    Article  PubMed  Google Scholar 

  • Hornickel, J., Anderson, S., Skoe, E., Yi, H., & Kraus, N. (2012b). Subcortical representation of speech fine structure relates to reading ability. NeuroReport, 23(1), 6–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Janata, P. (2015). Neural basis of music perception. In G. G. Celesia & G. Hickok, (Eds.), Handbook of clinical neurology. The human auditory system: Fundamental organization and clinical disorders (pp. 187–205). Amsterdam: Elsevier.

    Google Scholar 

  • Jerger, J., & Musiek, F. (2000). Report of the consensus conference on the diagnosis of auditory processing disorders in school-aged children. Journal of American Academy of Audiology, 11(9), 467–474.

    CAS  Google Scholar 

  • Jewett, D. L., & Williston, J. S. (1971). Auditory-evoked far fields averaged from the scalp of humans. Brain, 94(4), 681–696.

    Article  CAS  PubMed  Google Scholar 

  • Jirsa, R. E., & Clontz, K. B. (1990). Long latency auditory event-related potentials from children with auditory processing disorders. Ear and Hearing, 11(3), 222–232.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, K., Nicol, T., Zecker, S., & Kraus, N. (2007). Auditory brain stem correlates of perceptual timing deficits. Journal of Cognitive Neuroscience, 19(3), 376–385.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, D. (1961). Some effects of temporal-lobe damage on auditory perception. Canadian Journal of Psychology, 15(3), 156–165.

    Article  CAS  PubMed  Google Scholar 

  • King, C., Warrier, C. M., Hayes, E., & Kraus, N. (2002). Deficits in auditory brain stem pathway encoding of speech sounds in children with learning problems. Neuroscience Letters, 319(2), 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Knight, R. T., Hillyard, S. A., Woods, D. L., & Neville, H. J. (1980). The effects of frontal and temporal-parietal lesions on the auditory evoked potential in man. Electroencephalography and Clinical Neurophysiology, 50(1), 112–124.

    Article  CAS  PubMed  Google Scholar 

  • Knight, R. T., Scabini, D., Woods, D. L., & Clayworth, C. (1988). The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroencephalography and Clinical Neurophysiology, 70(6), 499–509.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., & Anderson, S. (2016). Auditory processing disorder: Biological basis and treatment efficacy. In R. R. Fay & A. N. Popper (Eds.), Translational research in audiology and the hearing sciences: An essential guide for scientists and clinicians (pp. 299–318). New York: Springer Science+Business Media.

    Google Scholar 

  • Kraus, N., & Hornickel, J. (2012). cABR: A biological probe of auditory processing. In D. Geffner & D. Ross-Swain (Eds.), Auditory processing disorders: Assessment, management and treatment (pp. 159–183). San Diego: Plural Publishing.

    Google Scholar 

  • Kraus, N., & Nicol, T. (2014). The cognitive auditory system: The role of learning in shaping the biology of the auditory system. In R. R. Fay & A. N. Popper (Eds.), Perspectives on auditory research (pp. 299–319). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2015). Unraveling the biology of auditory learning: A cognitive-sensorimotor-reward framework. Trends in Cognitive Sciences, 19(11), 642–654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraus, N., McGee, T., & Comperatore, C. (1989). MLRs in children are consistently present during wakefulness, stage 1, and REM sleep. Ear and Hearing, 10, 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., McGee, T. J., Carrell, T. D., Zecker, S. G., et al. (1996). Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science, 273, 971–973.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., Skoe, E., Parbery-Clark, A., & Ashley, R. (2009). Experience-induced malleability in neural encoding of pitch, timbre, and timing: Implications for language and music. Annals of the New York Academy of Sciences: Neurosciences and Music III, 1169, 543–557.

    Article  Google Scholar 

  • Krishnamurti, S. (2001). P300 auditory event-related potentials in binaural and competing noise conditions in adults with central auditory processing disorders. Contemporary Issues in Communication Science and Disorders, 28, 40–47.

    Google Scholar 

  • Krishnan, A. (1999). Human frequency-following responses to two-tone approximations of steady-state vowels. Audiology and Neuro-Otology, 4(2), 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, A. (2002). Human frequency-following responses: Representation of steady-state synthetic vowels. Hearing Research, 166(1), 192–201.

    Article  PubMed  Google Scholar 

  • Krishnan, A. (2007). Frequency-following response. In R. F. Burkard, J. J. Eggermont, & M. Don (Eds.), Auditory evoked potentials: Basic principles and clinical application (pp. 313–334). Philadelphia, Lippincott: Williams & Wilkins.

    Google Scholar 

  • Krishnan, A., & Parkinson, J. (2000). Human frequency-following responses: Representation of tonal sweeps. Audiology and Neuro-otology, 5, 312–321.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, A., Xu, Y., Gandour, J. T., & Cariani, P. A. (2004). Human frequency-following response: Representation of pitch contours in Chinese tones. Hearing Research, 189(1), 1–12.

    Article  PubMed  Google Scholar 

  • Krishnan, A., Xu, Y., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brain stem is sensitive to language experience. Cognitive Brain Research, 25(1), 161–168.

    Article  PubMed  Google Scholar 

  • Kuhl, P. K. (2000). A new view of language acquisition. Proceedings of the National Academy of Sciences of the USA, 97(22), 11850–11857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, P., & Singh, N. K. (2015). BioMARK as electrophysiological tool for assessing children at risk for (central) auditory processing disorders without reading deficits. Hearing Research, 324, 54–58.

    Article  PubMed  Google Scholar 

  • Ladefoged, P. (2006). A course in phonetics (5th ed.). Boston, MA: Thomson Higher Learning.

    Google Scholar 

  • Marshall, C. R., Harcourt-Brown, S., Ramus, F., & van der Lely, H. K. J. (2009). The link between prosody and language skills in children with specific language impairment (SLI) and or dyslexia. International Journal of Language & Communication Disorders, 44(4), 466–488.

    Article  CAS  Google Scholar 

  • Martin, B. A., Tremblay, K. L., & Stapells, D. R. (2007). Principles and applications of cortical auditory evoked potentials. In R. F. Burkard, M. Don, & J. J. Eggermont (Eds.), Principles and clinical application of cortical auditory evoked potentials (pp. 482–507). Baltimore: Lippincott and Williams & Wilkins.

    Google Scholar 

  • May, P. J., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47(1), 66–122.

    Article  PubMed  Google Scholar 

  • McGee, T., Kraus, N., & Nicol, T. (1997). Is it really a mismatch negativity? An assessment of methods for determining response validity in individual subjects. Electroencephalography and Clinical Neurophysiology, 104, 359–368.

    Article  CAS  PubMed  Google Scholar 

  • McPherson, D. (1996). Late potentials of the auditory system. San Diego, CA: Singular Publishing Group.

    Google Scholar 

  • Medwetsky, L. (2011). Spoken language processing model: Bridging auditory and language processing to guide assessment and intervention. Language, Speech, and Hearing Services in Schools, 42(3), 286–296.

    Article  PubMed  Google Scholar 

  • Montgomery, C. R., Morris, R. D., Sevcik, R. A., & Clarkson, M. G. (2005). Auditory backward masking deficits in children with reading disabilities. Brain and Language, 95, 450–456.

    Article  PubMed  Google Scholar 

  • Moore, D. R. (2007). Auditory processing disorders: Acquisition and treatment. Journal of Communication Disorders, 40(4), 295–304.

    Article  PubMed  Google Scholar 

  • Moore, D. R. (2012). Listening difficulties in children: Bottom-up and top-down contributions. Journal of Communication Disorders, 45(6), 411–418.

    Article  PubMed  Google Scholar 

  • Moore, J. K., & Linthicum, F. H., Jr. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460–478.

    Article  PubMed  Google Scholar 

  • Moore, D. R., Rosen, S., Bamiou, D. E., Campbell, N. G., & Sirimanna, T. (2013). Evolving concepts of developmental auditory processing disorder (APD): A British society of audiology APD special interest group ‘white paper’. International Journal of Audiology, 52(1), 3–13.

    Article  PubMed  Google Scholar 

  • Moushegian, G., Rupert, A. L., & Stillman, R. D. (1973). Laboratory note. Scalp-recorded early responses in man to frequencies in the speech range. Electroencephalography and Clinical Neurophysiology, 35(6), 665–667.

    Article  CAS  PubMed  Google Scholar 

  • Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the USA, 104(40), 15894–15898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musiek, F., & Berge, B. (1998). A neuroscience view of auditory training/stimulation and central auditory processing disorders. In M. Masters, N. Stecker, & J. Katz (Eds.), Central auditory processing disorders: Mostly management (pp. 15–32). Boston, MA: Allyn and Bacon.

    Google Scholar 

  • Musiek, F. E., & Chermak, G. D. (2014). Auditory neuroscience and central auditory processing disorder: An overview. In F. E. Musiek & G. D. Chermak (Eds.), Handbook of central auditory processing disorder (pp. 3–15). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Musiek, F. E., & Lee, W. W. (1995). The auditory brain stem response in patients with brain stem or cochlear pathology. Ear and Hearing, 16(6), 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Musiek, F., Gollegly, K., Kibbe, K., & Verkest-Lenz, S. (1991). Proposed screening test for central auditory processing disorders: Follow-up on the dichotic digits test. American Journal of Otology, 199, 12(2), 109–113.

    Google Scholar 

  • Musiek, F. E., Charette, L., Kelly, T., Lee, W., & Musiek, E. (1999). Hit and false positive rates for middle latency response in patients with central nervous system involvement. Journal of American Academy of Audiology, 10(3), 124–132.

    Google Scholar 

  • Musiek, F. E., Shinn, J. M. S., & Hare, C. M. A. (2002). Plasticity, auditory training and auditory processing disorders. Seminars in Hearing, 23(4), 263–275.

    Article  Google Scholar 

  • Musiek, F. E., Bellis, T. J., & Chermak, G. D. (2005). Nonmodularity of the central auditory nervous system: Implications for (central) auditory processing disorder. American Journal Audiology, 14(2), 128–38.

    Article  Google Scholar 

  • Musiek, F. E., Baran, J., Shinn, J., & Jones, R. (2012). Disorders of the auditory system (pp. 317–321). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Näätänen, R. (1995). The mismatch negativity: A powerful tool for cognitive neuroscience. Ear and Hearing, 16(1), 6–18.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42(1), 25–32.

    Google Scholar 

  • Nishi, K., Lewis, D. E., Hoover, B. M., Choi, S., & Stelmachowicz, P. (2007). Children’s recognition of American English consonants in noise. Journal of the Acoustical Society of America, 127, 3177–3188.

    Article  Google Scholar 

  • Oxenham, A. J. (2012). Pitch perception. The Journal of Neuroscience, 32(39), 13335–13338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özdamar, Ö., & Kraus, N. (1983). Auditory middle-latency responses in humans. Audiology, 22, 34–49.

    Article  PubMed  Google Scholar 

  • Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical experience and the aging auditory system: Implications for cognitive abilities and hearing speech in noise. PLoS ONE, 6(5), e18082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plyler, P. N., & Ananthanarayan, A. K. (2001). Human frequency following responses: Representation of second formant transitions in normal-hearing and hearing-impaired listeners. Journal of the American Academy of Audiology, 12(10), 423–533.

    Google Scholar 

  • Rocha-Muniz, C. N., Befi-Lopes, D. M., & Schochat, E. (2012). Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brain stem response. Hearing Research, 294, 143–152.

    Article  PubMed  Google Scholar 

  • Rocha-Muniz, C. N., Befi-Lopes, D. M., & Schochat, E. (2014). Sensitivity, specificity and efficiency of speech-evoked ABR. Hearing Research, 317, 15–22.

    Article  PubMed  Google Scholar 

  • Rocha-Muniz, C. N., Befi-Lopes, D. M., & Schochat, E. (2015). Mismatch negativity in children with specific language impairment and auditory processing disorder. Brazilian Journal of Otorhinolaryngology, 81(4), 408–415.

    Article  PubMed  Google Scholar 

  • Rocha-Muniz, C. N., Filippini, R., Neves-Lobo, I. F., Rabelo, C. M., et al. (2016). Can speech-evoked ABR become a useful tool in clinical practice? CoDAS, 28(1), 77–80. doi:10.1590/2317-1782/20162014231.

    Article  PubMed  Google Scholar 

  • Russo, N., Nicol, T., Musacchia, G., & Kraus, N. (2004). Brain stem responses to speech syllables. Clinical Neurophysiology, 115(9), 2021–2030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo, N., Skoe, E., Trommer, B., Nicol, T., et al. (2008). Deficient brain stem encoding of pitch in children with autism spectrum disorders. Clinical Neurophysiology, 119(8), 1720–1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruusuvirta, T., Huotilainen, M., Fellman, V., & Näätänen, R. (2009). Numerical discrimination in newborn infants as revealed by event-related potentials to tone sequences. The European Journal of Neuroscience, 30(8), 620–624.

    Article  Google Scholar 

  • Sanchez-Longo, L. P., Forster, F. M., & Auth, T. L. (1957). A clinical test for sound localization and its applications. Neurology, 7(9), 655–663.

    Article  CAS  PubMed  Google Scholar 

  • Sanger, D. D., Keith, R. W., & Maher, B. A. (1987). An assessment technique for children with auditory-language processing problems. Journal of Communication Disorders, 20(4), 265–279.

    Article  CAS  PubMed  Google Scholar 

  • Schochat, E., & Musiek, F. (2006). Maturation of outcomes of behavioral and electrophysiologic tests of central auditory function. Journal of Communication Disorders, 39(1), 78–92.

    Article  PubMed  Google Scholar 

  • Schochat, E., Rabelo, C. M., & Loreti, R. C. A. (2004). Sensitividade e Especificidade do Potencial de Latência Média. Revista Brasileira de Otorrinolaringologia, 70(3), 353–358.

    Article  Google Scholar 

  • Schochat, E., Musiek, F. E., Alonso, R., & Ogata, J. (2010). Effect of auditory training on the middle latency response in children with (central) auditory processing disorder. Brazilian Journal of Medical and Biological Research, 43(8), 777–785.

    Article  CAS  PubMed  Google Scholar 

  • Segalowitz, S. J., Bernstein, D. M., & Lawson, S. (2001). P300 event-related potential decrements in well-functioning university students with mild head injury. Brain and Cognition, 45(3), 342–356.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, A., & Mitchell, T. (2013). The impact of deafness on the human central auditory and visual system. In E. W. Rubel, A. N. Popper, & R. R. Fay (Eds.), Development of the auditory system. New York: Springer Science + Business Media.

    Google Scholar 

  • Sharma, M., Purdy, S. C., & Kelly, A. S. (2009). Comorbity of auditory processing, language, and reading disorders. Journal of Speech, Language, and Hearing Research, 52(3), 706–722.

    Article  PubMed  Google Scholar 

  • Shehata-Dieler, W., Shimizu, H., Soliman, S. M., & Tusa, R. J. (1991). Middle latency auditory evoked potentials in temporal lobe disorders. Ear and Hearing, 12(6), 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Simões, M. B. (2009). Auditory steady state response in children with dyslexia and with (central) auditory processing disorders. Master’s Dissertation. University of São Paulo, Brazil.

    Google Scholar 

  • Skoe, E., & Kraus, N. (2010). Auditory brain stem response to complex sounds: A tutorial. Ear and Hearing, 31(3), 302–324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoe, E., Krizman, J., Anderson, S., & Kraus, K. (2013). Stability and plasticity of auditory brain stem function across the lifespan. Cerebral Cortex, 25, 1415–1426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Small, S. A., & Werker, J. F. (2012). Does the ACC have potential as an index of early speech-discrimination ability? A preliminary study in 4-month-old infants with normal hearing. Ear and Hearing, 33(6), 59–69.

    Article  Google Scholar 

  • Smith, J. C., Marsh, J. T., & Brown, W. S. (1975). Far-field recorded frequency-following responses: Evidence for the locus of brain stem sources. Electroencephalography and Clinical Neurophysiology, 39(5), 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Song, J. H., Banai, K., Russo, N. M., & Kraus, N. (2006). On the relationship between speech- and nonspeech-evoked auditory brain stem responses. Audiology and Neurotology, 11(4), 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Starr, A., & Achor, L. J. (1975). Auditory brain stem responses in neurological disease. Archives of Neurology, 32(11), 761–768.

    Article  CAS  PubMed  Google Scholar 

  • Strait, D. L., Skoe, E., Kraus, N., & Ashley, R. (2009). Musical experience and neural efficiency: Effects of training on subcortical processing of vocal expressions of emotion. European Journal of Neuroscience, 29, 661–668.

    Article  PubMed  Google Scholar 

  • Tallal, P. (1976). Rapid auditory processing in normal and disordered language development. Journal of Speech and Hearing Research, 19(3), 561–571.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay, K., Kraus, N., McGee, T., Ponton, C. W., & Otis, B. (2001). Central auditory plasticity: Changes in the N1-P2 complex after speech-sound training. Ear and Hearing, 22(2), 79–90.

    Article  CAS  PubMed  Google Scholar 

  • Vander Werff, K. R., & Burns, K. S. (2011). Brain stem responses to speech in younger and older adults. Ear and Hearing, 32(2), 168–180.

    Article  PubMed  Google Scholar 

  • Xu, Y., Krishnan, A., & Gandour, J. T. (2006). Specificity of experience-dependent pitch representation in the brainstem. NeuroReport, 17(15), 1601–1605.

    Article  PubMed  Google Scholar 

  • Weber, C., Hahne, A., Friedrich, M., & Friederici, A. D. (2005). Reduced stress pattern discrimination in 5-month-olds as a marker of risk for later language impairment: neurophysiological evidence. Cognitive Brain Research, 25(1), 180–187.

    Article  PubMed  Google Scholar 

  • Weihing, J., Schochat, E., & Musiek, F. E. (2012). Ear and electrode effects reduce within-group variability in middle latency response amplitude measures. International Journal of Audiology, 51(5), 405–412.

    Article  PubMed  Google Scholar 

  • White-Schwoch, T., Davies, E. C., Thompson, E. C., Woodruff Carr, K., et al. (2015a). Auditory-neurophysiological responses to speech during early childhood: Effects of background noise. Hearing Research, 328, 34–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • White-Schwoch, T., Woodruff Carr, K., Thompson, E. C., Anderson, S., et al. (2015b). Auditory processing in noise: A preschool biomarker for literacy. PLoS Biology, 13(7), e1002196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wible, B., Nicol, T., & Kraus, N. (2004). Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems. Biological Psychology, 67, 299–317.

    Article  PubMed  Google Scholar 

  • Wible, B., Nicol, T., & Kraus, N. (2005). Correlation between brain stem and cortical auditory processes in normal and language-impaired children. Brain, 128, 417–423.

    Article  PubMed  Google Scholar 

  • Wijnen, V. J. M., van Boxtel, G. J. M., Eilander, H. J., & de Gelder, B. (2007). Mismatch negativity predicts recovery from the vegetative state. Clinical Neurophysiology, 118(3), 597–605.

    Article  CAS  PubMed  Google Scholar 

  • Witton, C. (2010). Childhood auditory processing disorder as a developmental disorder: The case for a multi-professional approach to diagnosis and management. International Journal of Audiology, 49(2), 83–87.

    Article  PubMed  Google Scholar 

  • Wright, B. A., Lombardino, L. J., King, W. M., Puranik, C. S., Leonard, C. M., & Merzenich, M. M. (1997). Deficits in auditory temporal and spectral resolution in language-impaired children. Nature, 387(6629), 176–178.

    Article  CAS  PubMed  Google Scholar 

  • Young, E. D., & Sachs, M. B. (1979). Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. The Journal of the Acoustical Society of America, 66(5), 1381–1403.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

Eliane Schochat, Caroline Nunes Rocha-Muniz, and Renata Filippini declared that they had no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane Schochat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schochat, E., Rocha-Muniz, C.N., Filippini, R. (2017). Understanding Auditory Processing Disorder Through the FFR. In: Kraus, N., Anderson, S., White-Schwoch, T., Fay, R., Popper, A. (eds) The Frequency-Following Response. Springer Handbook of Auditory Research, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-47944-6_9

Download citation

Publish with us

Policies and ethics