Skip to main content

Agrochemicals and Soil Microbes: Interaction for Soil Health

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

To fulfill food and fiber demand of the ever-increasing population over the world, agrochemicals are being used in large quantities. These agrochemicals include chemicals (hormone, fungicide, or insecticide, pesticides, and fertilizers) manufactured or processed for agricultural use to increase crop yield for economic point of view. Soil microbes constitute the biosphere that is the most important fraction of soil involved in nutrient cycling thus maintaining soil fertility. Agrochemicals are used to enhance the productivity of crops but when entering into soil directly affect soil microbes which ultimately deteriorate soil health. Many biological functions of the soil are disrupted by the application of agrochemicals. The direct and indirect effects of these chemicals on soil biology are reduction in population, proliferation of beneficial soil microorganisms and their biotransformation, decrease in biological nitrogen fixation, and reduced mineralization of organic compounds. Soil microbial enzymatic activities are the indicators of soil biological health, fertility, and chemical status. Agrochemicals incorporated in the soil eradicate beneficial soil microbes which are involved in important enzymatic components like chain of reactions that play vital role in synchronizing important chemical processes in soil. On the other hand, many microbes in the soil have the ability to degrade or metabolize the agrochemical pollutants in the soil to ensure the soil health. Soil microorganisms have intrinsic nature for rapid degradation processes and genetic adaptation to chemicals in the environment. Agrochemicals of diverse nature could be remediated from soil and water with the use of potential microorganisms in the soil. In this chapter, the effect of agrochemicals on soil biology and the role of soil microbes in the degradation of agrochemicals have been reviewed and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott KC, Karst J, Biederman LA, Borrett SR, Hastings A, Walsh V, Bever JD (2015) Spatial heterogeneity in soil microbes alters outcomes of plant competition. PLoS One 10(5):e0125788

    Article  PubMed  PubMed Central  Google Scholar 

  • Aislabie J, Lloyd-Jones G (1995) A review of bacterial-degradation of pesticides. Soil Res 33(6):925–942

    Article  CAS  Google Scholar 

  • Anderson T, Weigel H (2003) On the current debate about soil biodiversity. Landbauforschung Volkenrode 53(4):223–234

    Google Scholar 

  • Antonious GF (2003) Impact of soil management and two botanical insecticides on urease and invertase activity. J Environ Sci Health B 38(4):479–488

    Article  PubMed  Google Scholar 

  • Araújo AD, Monteiro RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804

    Article  PubMed  Google Scholar 

  • Ardley JH (1999) Pesticide considerations: an environmental concern. Agric Sci 12:21–24

    Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  PubMed  Google Scholar 

  • Baxter J, Cummings SP (2008) The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil. J Appl Microbiol 104(6):1605–1616

    Article  CAS  PubMed  Google Scholar 

  • Begum SM, Rajesh G (2015) Impact of microbial diversity and soil enzymatic activity in dimethoate amended soils series of Tamil Nadu

    Google Scholar 

  • Bello D, Trasar-Cepeda C, Leiros MC, Gil-Sotres F (2008) Evaluation of various tests for the diagnosis of soil contamination by 2,4,5-trichlorophenol (2,4,5-TCP). Environ Pollut 156(3):611–617

    Article  CAS  PubMed  Google Scholar 

  • Bending GD, Turner MK, Rayns F, Marx MC, Wood M (2004) Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem 36:1785–1792

    Article  CAS  Google Scholar 

  • Bending GD, Rodriguez-Cruz MS, Lincoln SD (2007) Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere 69:82–88

    Article  CAS  PubMed  Google Scholar 

  • Bishnu A, Chakraborty A, Chakrabarti K, Saha T (2012) Ethion degradation and its correlation with microbial and biochemical parameters of tea soils. Biol Fertil Soils 48:19–29

    Article  CAS  Google Scholar 

  • Blain PG (1989) Aspects of pesticide toxicology. Adverse Drug React Acute Poisoning Rev 9(1):37–68

    Google Scholar 

  • Bosso A, Salmaso D, De Faveri E, Guaita M, Franceschi D (2015a) The use of carboxymethylcellulose for the tartaric stabilization of white wines, in comparison with other oenological additives. VITIS-J Grapevine Res 49(2):95

    Google Scholar 

  • Bosso L, Scelza R, Testa A, Cristinzio G, Rao MA (2015b) Depletion of pentachlorophenol contamination in an agricultural soil treated with byssochlamys nivea, scopulariopsis brumptii and urban waste compost: a laboratory microcosm study. Water Air Soil Pollut 226(6):1–9

    Article  CAS  Google Scholar 

  • Bretaud S, Toutant JP, Saglio P (2000) Effects of carbofuran, diuron and nicosulfuronon acetyl cholinesterase activity in goldfish (Carassius auratus). Ecotoxicol Environ Saf 47:17–124

    Article  Google Scholar 

  • Burrows LA, Edwards CA (2004) The use of integrated soil microcosms to assess the impact of carbendazim on soil ecosystems. Ecotoxicology 13(1):143–161

    Article  CAS  PubMed  Google Scholar 

  • Caceres TP, He WX, Megharaj M, Naidu R (2009) Effect of insecticide fenamiphos on soil microbial activities in Australian and Ecuadorean soils. J Environ Sci Health B 44:13–17

    Article  CAS  PubMed  Google Scholar 

  • Carriger JF, Rand GM, Gardinali PR, Perry WB, Tompkins MS, Fernandez AM (2006) Pesticides of potential ecological concern in sediment from south Florida canals: an ecological risk prioritization for aquatic arthropods. Soil Sediment Contam 15(1):21–45

    Article  CAS  Google Scholar 

  • Central Food Technological Research Institute (CFTRI) (2003) Report of analysis of pesticide residue in soft drink samples, Mysore

    Google Scholar 

  • Chenseng L, Toepel K, Irish R, Richard AF, Dana BB, Bravo R (2006) Organic diets significantly lower children’s dietary exposure to organophosphorous pesticides. Environ Health Perspect 114(2):260–263

    Article  Google Scholar 

  • Chu HY, Zhu JG, Xie ZB, Zhang HY, Cao ZH, Li ZG (2003) Effects of lanthanum on dehydrogenase activity and carbon dioxide evolution in a haplic acrisol. J Soil Res 41:731–739

    Article  CAS  Google Scholar 

  • Das A, Mukherjee D (2000) Soil application of insecticides influences microorganisms and plant nutrients. Appl Soil Ecol 14(1):55–62

    Article  Google Scholar 

  • Demanou J, Monkiédjé A, Njiné T, Foto SM, Nola M, Zebaze Togouet SH, Kemka N (2004) Changes in soil chemical properties and microbial activities in response to the fungicide Ridomil Gold plus copper. Int J Environ Res Public Health 1(1):26–34

    Article  CAS  PubMed  Google Scholar 

  • Deng SP, Tabatabai MA (1994) Cellulase activity of soils. Soil Biol Biochem 26:1347–1354

    Article  CAS  Google Scholar 

  • Dick WA, Cheng L, Wang P (2000) Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol Biochem 32:1915–1919

    Article  CAS  Google Scholar 

  • Dong YJ, Bartlam M, Sun L, Zhou YF, Zhang ZP, Zhang CG, Rao ZH, Zhang XE (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663

    Article  CAS  PubMed  Google Scholar 

  • Galloway T, Handy R (2003) Immunotoxicity of organophosphorus pesticides. Ecotoxicology 12:345–363

    Article  CAS  PubMed  Google Scholar 

  • Ganeshamurthy AN, Takkar PN (1997) Residual management of sulfur applied to soybean or wheat in a soybean-wheat system on vertisols. J Soil Res 35:199–208

    Article  CAS  Google Scholar 

  • Gianfreda L, Bollag JM (1994) Effect of soils on the behavior of immobilized enzymes. Soil Sci Soc Am J 58:1672–1681

    Article  CAS  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Zhu L, Wang J, Wang J, Xie H, Lv D (2015) Enzymatic activities and microbial biomass in black soil as affected by azoxystrobin. Environ Earth Sci 74(2):1353–1361

    Article  CAS  Google Scholar 

  • Harris-Hellal J, Vallaeys T, Garnier-Zarli E, Bousserrhine N (2009) Effects of mercury on soil microbial communities in tropical soils of French Guyana. Appl Soil Ecol 41:59–68

    Article  Google Scholar 

  • Hashmi I, Khan MA, Kim JG (2004) Malathion degradation by Pseudomonas using activated sludge treatment system (biosimulator). Biotechnology 3:82–89

    Article  Google Scholar 

  • Hernandez-Rodriguez D, Sanchez JE, Nieto MG, Marquez-Rocha FJ (2006) Degradation of endosulfan during substrate preparation and cultivation of Pleurotus pulmonarius. World J Microbiol Biotechnol 22:753–760

    Article  CAS  Google Scholar 

  • Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of α-and β-endosulfan by soil bacteria. Biodegradation 18(6):731–740

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009a) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009b) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907

    Article  CAS  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Jin Z, Li Z, Li Q, Hu Q, Yang R, Tang H, Li M, Huang B, Zhang J, Li G (2015) Canonical correspondence analysis of soil heavy metal pollution, microflora and enzyme activities in the Pb–Zn mine tailing dam collapse area of Sidi village, SW China. Environ Earth Sci 73:267–274

    Article  CAS  Google Scholar 

  • Kalam A, Tah J, Mukherjee AK (2004) Pesticide effects on microbial population and soil enzyme activities during vermicomposting of agricultural waste. J Environ Biol 25:201–208

    CAS  PubMed  Google Scholar 

  • Kalyani SS, Sharma J, Dureja P, Singh S, Lata (2010) Influence of endosulfan on microbial biomass and soil enzymatic activities of a tropical alfisol. Bull Environ Contam Toxicol 84:351–356

    Article  Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Kiel M, Engesser KH (2015) The biodegradation vs. biotransformation of fluorosubstituted aromatics. Appl Microbiol Biotechnol 99:7433–7464

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu B, Zhang X, Gao M, Wang J (2015) Effects of Cu exposure on enzyme activities and selection for microbial tolerances during swine-manure composting. J Hazard Mater 283:512–518

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hui C, Bi L, Romantschuk M, Kontro M, Strömmer R, Hui N (2016) Bacterial community structure in atrazine treated reforested farmland in Wuying China. Appl Soil Ecol 98:39–46

    Article  CAS  Google Scholar 

  • Lu C, Barr DB, Pearson M, Bartell S, Bravo R (2006) A longitudinal approach to assessing urban and suburban children’s exposure to pyrethroid pesticides. Environ Health Perspect 1:1419–1423

    Article  Google Scholar 

  • Mackay D, Frasar A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391

    Article  CAS  PubMed  Google Scholar 

  • Majumder SP, Das AC (2016) Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues. Ecotoxicol Environ Saf 126:56–61

    Article  CAS  PubMed  Google Scholar 

  • Malhotra J, Aparna K, Dua A, Sangwan N, Trimurtulu N, Rao DL, Lal R (2015) Microbial and genetic ecology of tropical Vertisols under intensive chemical farming. Environ Monit Assess 187(1):1–7

    Article  CAS  Google Scholar 

  • Mariela FP, Pável MEI, Manuel SRL, Jesús FGM, Reyes LO (2016) Dehydrogenase and mycorrhizal colonization: tools for monitoring agrosystem soil quality. Appl Soil Ecol 100:144–153

    Article  Google Scholar 

  • Menon P, Gopal M, Parsad R (2005) Effects of chlorpyrifos and quinalphos on dehydrogenase activities and reduction of Fe3+ in the soils of two semi-arid fields of tropical India. Agric Ecosyst Environ 108:73–83

    Article  CAS  Google Scholar 

  • Millard P, Singh B (2010) Does grassland vegetation drive soil microbial diversity? Nutr Cycl Agroecosyst 88:147–158

    Article  Google Scholar 

  • Monkiedje A, Spiteller M (2002) Effects of the phenylamide fungicides, mefenoxam and metalaxyl on the microbiological properties of a sandy loam and a sandy clay soil. Biol Fertil Soils 35:393–398

    Article  CAS  Google Scholar 

  • Mulchandani P, Mulchandani A, Kaneva L, Chen W (1999) Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens Bioelectron 14(1):77–81

    Article  CAS  PubMed  Google Scholar 

  • Murphy CD (2016) Microbial degradation of fluorinated drugs: biochemical pathways, impacts on the environment and potential applications. Appl Microbiol Biotechnol 100(6):2617–2627

    Article  CAS  PubMed  Google Scholar 

  • Niemi RM, Vepsalainen M (2005) Stability of the fluorogenic enzyme substrates and pH optima of enzyme activities in different Finnish soils. J Microbiol Methods 60:195–205

    Article  CAS  PubMed  Google Scholar 

  • Niemi RM, Heiskanen I, Ahtiainen JH, Rahkonen A, Mäntykoski K, Welling L, Laitinen P, Ruuttunen P (2009) Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Appl Soil Ecol 41:293–304

    Article  Google Scholar 

  • Odenkirchen EW, Eisler R (1988) Chlorpyrifos hazards to fish, wildlife and invertebrates: a synoptic review. Report no. 85(1.13) U.S. fish and wildlife services. Biological report of chlorpyrifos in pure culture and in soil. Bull Environ Contam Toxicol 62:48–55

    Google Scholar 

  • Omar SA, Abdel-Sater MA (2001) Microbial populations and enzyme activities in soil treated with pesticides. Water Air Soil Pollut 127:49–63

    Article  CAS  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8(1):17–29

    Article  Google Scholar 

  • Postma J, Schilder MT (2015) Enhancement of soil suppressiveness against Rhizoctoniasolani in sugar beet by organic amendments. Appl Soil Ecol 94:72–79

    Article  Google Scholar 

  • Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95

    Article  PubMed  Google Scholar 

  • Qiu XH, Bai WQ, Zhong QZ, Li M, He FQ, Li BT (2006) Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101:986–994

    Article  CAS  PubMed  Google Scholar 

  • Radhika V, Subramanian S, Natarajan KA (2006) Bioremediation of zinc using Desulfotomaculum nigrificans: bioprecipitation and characterization studies. Water Res 40:3628–3636

    Article  CAS  PubMed  Google Scholar 

  • Raiesi F, Beheshti A (2014) Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Appl Soil Ecol 75:63–70

    Article  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86

    Article  CAS  PubMed  Google Scholar 

  • Rasool N, Reshi ZA (2010) Effect of the fungicide Mancozeb at different application rates on enzyme activities in a silt loam soil of the Kashmir Himalaya, India. Trop Ecol 51:199–205

    CAS  Google Scholar 

  • Riah W, Laval K, Laroche-Ajzenberg E, Mougin C, Latour X, Trinsoutrot-Gattin I (2014) Effects of pesticides on soil enzymes: a review. Environ Chem Lett. doi:10.1007/s10311-014-0458-2

  • Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987

    Article  CAS  PubMed  Google Scholar 

  • Ronhede S, Sorensen SR, Jensen B, Aamand J (2007) Mineralization of hydroxylatedisoproturon metabolites produced by fungi. Soil Biol Biochem 39:1751–1758

    Article  CAS  Google Scholar 

  • Sabale RP, Shabeer TPA, Utture SC, Banerjee K, Oulkar DP, Adsule PG, Deshmukh MB (2015) Kresoxim methyl dissipation kinetics and its residue effect on soil extra-cellular and intra-cellular enzymatic activity in four different soils of India. J Environ Sci Health B 50(2):90–98

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Turrion MB, Grierson PF, Gallardo JF (2001) Phosphatase activity, microbial phosphorus and fine root growth in forest soils in the Sierra de Gata, western central Spain. Biol Fertil Soils 34:151–155

    Article  CAS  Google Scholar 

  • Sebiomo A, Ogundero VW, Bankole SA (2012) Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr J Biotechnol 10:770–778

    Google Scholar 

  • Sharma ID, Chandel RS, Kaushal R, Patyal SK, Sharma PL (2010) Effect of pesticides on biochemical properties of tomato (Solanum lycopersicon) cropped soil. Indian J Agric Sci 80:640–644

    CAS  Google Scholar 

  • Singh PB, Sharma S, Saini HS, Chadha BS (2009) Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett Appl Microbiol 49(3):378–383

    Article  CAS  PubMed  Google Scholar 

  • Sukul P (2006) Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues. Soil Biol Biochem 28:320–326

    Article  Google Scholar 

  • Taheri AE, Hamel C, Gan Y (2015) Pyrosequencing reveals the impact of foliar fungicide application to chickpea on root fungal communities of durum wheat in subsequent year. Fungal Ecol 15:73–81

    Article  Google Scholar 

  • Tejada M (2009) Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate + diflufenican herbicides. Chemosphere 76:365–373

    Article  CAS  PubMed  Google Scholar 

  • Tejada M, Rodríguez-Morgado B, Gómez I, Parrado J (2014) Degradation of chlorpyrifos using different biostimulants/biofertilizers: Effects on soil biochemical properties and microbial community. Appl Soil Ecol 84:158–165

    Article  Google Scholar 

  • Trasar-Cepeda C, Leiros MC, Seoane S, Gil-Sotres F (2000) Limitations of soil enzymes as indicators of soil pollution. Soil Biol Biochem 32:1867–1875

    Article  CAS  Google Scholar 

  • Ubuoh EA, Akhionbare SMO, Akhionbare WN (2012) Effects of pesticide application on soil microbial spectrum: case study-fecolart demonstration farm, Owerri-West, Imo state, Nigeria. Int J Multidisc Sci Eng 3(2):34

    Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Wang SL, Wang CY, Huang TY (2008) Microbial reclamation of squid pen for the production of a novel extracellular serine protease by Lactobacillus paracasei subsp paracasei TKU012. Bioresour Technol 99:3411–3417

    Article  CAS  PubMed  Google Scholar 

  • Yang CL, Sun TH, He WX, Zhou QX, Chen S (2007) Single and joint effects of pesticides and mercury on soil urease. J Environ Sci 19(2):210–216

    Article  CAS  Google Scholar 

  • Zhang Q, Zhou W, Liang G, Sun J, Wang X, He P (2015a) Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Appl Soil Ecol 94:59–71

    Article  Google Scholar 

  • Zhang X, Dong W, Dai X, Schaeffer S, Yang F, Radosevich M, Xu L, Liu X, Sun X (2015b) Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Sci Total Environ 536:59–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaffar Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Malik, Z., Ahmad, M., Abassi, G.H., Dawood, M., Hussain, A., Jamil, M. (2017). Agrochemicals and Soil Microbes: Interaction for Soil Health. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_11

Download citation

Publish with us

Policies and ethics