Skip to main content

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 15))

  • 1417 Accesses

Abstract

For the purposes of a combinatorial perspective on Feynman graphs , the most appropriate way to set up the graphs will not have the edges or the vertices as the fundamental bits, but rather will be based on half edges .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To make this precise we’d need to move into matroids. Much of what we do with Feynman graphs works very naturally with regular matroids and even some more general matroids, but that’s another story.

References

  1. Yeats, K.: Rearranging Dyson-Schwinger equations. Mem. Am. Math. Soc. 211 (2011)

    Google Scholar 

  2. Yeats, K.A.: Growth estimates for Dyson-Schwinger equations. Ph.D. thesis, Boston University (2008)

    Google Scholar 

  3. Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 8(8), 395–408 (2001). arXiv:math/0002069

    Article  MathSciNet  MATH  Google Scholar 

  4. Kreimer, D.: Anatomy of a gauge theory. Ann. Phys. 321, 2757–2781 (2006). arXiv:hep-th/0509135v3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. van Suijlekom, W.D.: Renormalization of gauge fields: a Hopf algebra approach. Commun. Math. Phys. 276, 773–798 (2007). arXiv:hep-th/0610137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Brown, F.: On the periods of some Feynman integrals. arXiv:0910.0114

  7. Vlasev, A., Yeats, K.: A four-vertex, quadratic, spanning forest polynomial identity. Electron. J. Linear Alg. 23, 923–941 (2012). arXiv:1106.2869

    MathSciNet  MATH  Google Scholar 

  8. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Webb, B.S. (ed.) Surveys in Combinatorics, pp. 173–226. Cambridge (2005). arXiv:math/0503607

  9. Cvitanović, P.: Field Theory. Nordita Lecture Notes (1983)

    Google Scholar 

  10. Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  11. Cvitanović, P., Lautrup, B., Pearson, R.B.: Number and weights of Feynman diagrams. Phys. Rev. D 18(6), 1939–1949 (1978)

    Article  ADS  Google Scholar 

  12. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  13. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Westview, Boulder (1995)

    Google Scholar 

  14. Cheng, T.P., Li, L.F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford (1984)

    Google Scholar 

  15. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill (1980). Dover edition (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Yeats .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Yeats, K. (2017). Feynman Graphs. In: A Combinatorial Perspective on Quantum Field Theory. SpringerBriefs in Mathematical Physics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-47551-6_5

Download citation

Publish with us

Policies and ethics