Skip to main content

Hydrophobic and Hydrophilic Textiles

  • Chapter
  • First Online:
Examination of Textiles with Mathematical and Physical Methods

Abstract

Textiles can be finished to gain certain properties, e.g., by dyestuff to reach a desired look, by flame retardant, and by antibacterial or antimicrobial coatings. One property which is addressed very often, not only in technical textiles but also for garments or home textiles, is the behavior of the fabric surface when exposed to water. In some cases, textiles should be hydrophobic (water repellent), while other applications require hydrophilic (hygroscopic) properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • American Association of Textile Chemists and Colorists: Water Repellency: Spray Test. AATCC Test Method 22-2005 (2005)

    Google Scholar 

  • American Association of Textile Chemists and Colorists: Water Resistance: Rain Test. AATCC Test Method 35-2013 (2013)

    Google Scholar 

  • Bakli, C., Chakraborty, S.: Slippery to sticky transition of hydrophobic nanochannels. Nano Lett. 15, 7497–7502 (2015)

    Article  CAS  Google Scholar 

  • Barthlott, W., Ehler, N.: Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Akademie der Wiss. u. d. Literatur, Mainz (1977)

    Google Scholar 

  • Barthlott, W., Neinhuis, C.: The lotus-effect: nature’s model for self cleaning surfaces. Int. Text. Bull. 1, 8–12 (2001)

    Google Scholar 

  • Bico, J., Thiele, U., Quéré, D.: Wetting of textured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 206, 41–46 (2002)

    Article  CAS  Google Scholar 

  • Chen, Y.L., Helm, C.A., Israelachvili, J.N.: Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces. J. Phys. Chem. 95, 10736–10747 (1991)

    Article  CAS  Google Scholar 

  • Chen, X., Ma, R., Li, J., Hao, C., Guo, W., Luk, B.L., Li, S.C., Yao, S., Wang, Z.: The evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects. Phys. Rev. Lett. 109, 116101 (2012)

    Article  Google Scholar 

  • Collet, P., De Coninck, J., Dunlop, F., Regnard, A.: Dynamics of the contact line: contact angle hysteresis. Phys. Rev. Lett. 79, 3704 (1997)

    Article  CAS  Google Scholar 

  • dataphysics – Understanding Interfaces: Products. http://www.dataphysics.de/2/start/products/contact-angle-measuring-and-contour-analysis-systems/. Accessed 6 Aug 2016

  • Drelich, J., Miller, J.D., Good, R.J.: The effect of drop (Bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques. J. Colloid Interface Sci. 179, 37–50 (1996)

    Article  CAS  Google Scholar 

  • Du, J.M., Luo, X.F., Fu, Z., Xu, C.H., Ren, X.H., Gao, W.D., Li, Y.: Improving the hydrophobicity of nylon fabric by consecutive treatment with poly(acrylic acid), tetraethylorthosilicate, and octadecylamine. J. Appl. Polym. Sci. 132, UNSP 42456 (2015)

    Google Scholar 

  • Dussan, E.B., Chow, R.T.P.: On the ability of drops or bubbles to stick on non-horizontal surfaces of solids. J. Fluid Mech. 137, 1–29 (1983)

    Article  Google Scholar 

  • ElSherbini, A.I., Jacobi, A.M.: Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J. Colloid Interface Sci. 299, 841–849 (2006)

    Article  CAS  Google Scholar 

  • Fiedler, J., Ehrmann, A.: Influence of surface micro- and macro-structure on measured and real contact angles. In: Proceedings of Aachen-Dresden International Textile Conference, Aachen, 26–27 Nov 2015

    Google Scholar 

  • Gao, L., McCarthy, T.J.: How Wenzel and Cassie were wrong. Langmuir 34, 3762–3765 (2007)

    Article  Google Scholar 

  • Guo, Z., Zhou, F., Hao, J., Liu, W.: Stable biomimetic super-hydrophobic engineering materials. J. Am. Chem. Soc. 127, 15670–15671 (2005)

    Article  CAS  Google Scholar 

  • Johnson Jr., R.E., Dettre, R.H.: Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J. Phys. Chem. 68, 1744–1750 (1964)

    Article  CAS  Google Scholar 

  • Krüss – Advancing your Surface Science: Drop Shape Analysis. http://www.kruss.de/services/education-theory/glossary/drop-shape-analysis/. Accessed 6 Aug 2016

  • Lim, J., Powell, N., Lee, H., Michielsen, S.: Integration of yarn compression in modeling structural geometry of liquid resistant-repellent fabric surfaces and its impact on liquid behavior. J. Mater. Sci. 51, 7199–7210 (2016)

    Article  CAS  Google Scholar 

  • Marmur, A.: Wetting of hydrophobic rough surfaces: to be heterogeneous or not to be. Langmuir 19, 8343–8348 (2003)

    Article  CAS  Google Scholar 

  • Molina, J., Fernandez, J., Fernandes, M., Souto, A.P., Esteves, M.F., Bonastre, J., Cases, F.: Plasma treatment of polyester fabrics to increase the adhesion of reduced graphene oxide. Synth. Met. 202, 110–122 (2015)

    Article  CAS  Google Scholar 

  • Mueller, T.: Biomimetics, design by nature. Nat. Geo. Mag. 68 (2008)

    Google Scholar 

  • Mura, S., Greppi, G., Malfatti, L., Lasio, B., Sanna, V., Mura, M.E., Marceddu, S., Luglie, A.: Multifunctionalization of wool fabrics through nanoparticles: a chemical route towards smart textiles. J. Colloid Interface Sci. 456, 85–92 (2015)

    Article  CAS  Google Scholar 

  • Patankar, N.A.: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19, 1249–1253 (2003)

    Article  CAS  Google Scholar 

  • Periolatto, M., Ferrero, F.: Cotton and polyester surface modification by methacrylic silane and fluorinated alkoxysilane via sol-gel and UV-curing coupled process. Surf. Coat. Technol. 271, 165–173 (2015)

    Article  CAS  Google Scholar 

  • Popescu, V., Sandu, I., Muresan, E.I., Istrate, B., Lisa, G.: Effects of the pre-treatment with atmospheric-air plasma followed by conventional finishing. Rev. Chim. 65, 676–683 (2014)

    CAS  Google Scholar 

  • Przybylak, M., Maciejewski, H., Dutkiewicz, A., Dabek, I., Nowicki, M.: Fabrication of superhydrophobic cotton fabrics by a simple chemical modification. Cellulose 23, 2185–2197 (2016)

    Article  CAS  Google Scholar 

  • Rahimi, M., Zinadini, S., Zinatizadeh, A.A., Vatanpour, V., Rajabi, L., Rahimi, Z.: Hydrophilic goethite nanoparticle as a novel antifouling agent in fabrication of nanocomposite polyethersulfone membrane. J. Appl. Polym. Sci. 133, 43592 (2016)

    Article  Google Scholar 

  • Samm, K., Kling, R., Korger, M., Tillmanns, A., Janssen, E.: Functionalising of textile surfaces with a combination of laser treatment and sol-gel coating. In: Proceedings of the euspen International Conference, San Sebastian (2009a)

    Google Scholar 

  • Samm, K., Hustedt, M., Stein, J., Klug, U., Korger, M., Tillmanns, A., Janssen, E.: Potential applications of lasers in the textile industry. In: Proceedings of the 3rd Aachen-Dresden International Textile Conference, Aachen 26–27 Nov (2009b)

    Google Scholar 

  • Shanahan, M.E.R.: Simple theory of “stick-slip” wetting hysteresis. Langmuir 11, 1041–1043 (1995)

    Article  CAS  Google Scholar 

  • Solga, A., Cerman, Z., Striffler, B.F., Spaeth, M., Barthlott, W.: The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2, 1–9 (2007)

    Article  Google Scholar 

  • Swain, P.S., Lipowsky, R.: Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws. Langmuir 14, 6772–6780 (1998)

    Article  CAS  Google Scholar 

  • Tadmor, R.: Line energy and the relation between advancing, receding and young contact angles. Langmuir 20, 7659–7664 (2004)

    Article  CAS  Google Scholar 

  • Torre, C., Rabe, M., Janssen, E.: Superhydrophobe und superhydrophile textile Oberflächen. Textilveredlung 7/8 (2007)

    Google Scholar 

  • Türk, M., Ehrmann, A., Mahltig, B.: Water-, oil-, and soil-repellent treatment of textiles, artificial leather, and leather. J. Text. Inst. 106, 611–620 (2015)

    Article  Google Scholar 

  • Varanasi, K.K., Deng, T., Hsu, M.F., Bhate, N.: Design of superhydrophobic surfaces for optimum roll-off and droplet impact resistance. ASME Int. Mech. Eng. Cong. Expo. 13, 637–645 (2008)

    Google Scholar 

  • Vorobyev, A.Y., Guo, C.: Multifunctional surfaces produced by femtosecond laser pulses. J. Appl. Phys. 117, 033103 (2015)

    Article  Google Scholar 

  • Wang, X., Weiss, R.A.: A facile method for preparing sticky, hydrophobic polymer surfaces. Langmuir 28, 3298–3305 (2012)

    Article  CAS  Google Scholar 

  • Whyman, G., Bormashenko, E., Stein, T.: The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)

    Article  CAS  Google Scholar 

  • Wolansky, G., Marmur, A.: The actual contact angle on a heterogeneous rough surface in three dimensions. Langmuir 14, 5292–5297 (1998)

    Article  CAS  Google Scholar 

  • Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ehrmann, A., Blachowicz, T. (2017). Hydrophobic and Hydrophilic Textiles. In: Examination of Textiles with Mathematical and Physical Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-47408-3_9

Download citation

Publish with us

Policies and ethics