Skip to main content

Thermal Properties of Textiles

  • Chapter
  • First Online:
Examination of Textiles with Mathematical and Physical Methods
  • 731 Accesses

Abstract

Thermal properties are essential for textile materials due to their common everyday use and protection against cold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Abdel-Rehim, Z.S., Saad, M.M., El-Shakankery, M., Hanafy, I.: Textile fabrics as thermal insulators. AUTEX Res. J. 6, 148–161 (2006)

    Google Scholar 

  • Adam, E.A., Jones, P.J.: Thermophysical properties of stabilised soil building blocks. Build. Environ. 30, 245–253 (1995)

    Article  Google Scholar 

  • Angelova, R.A., Reiners, P., Georgieva, E., Konova, H.P., Pruss, B., Kyosev, Y.: Heat and mass transfer through outerwear clothing for protection from cold: influence of geometrical, structural and mass characteristics of the textile layers. Text. Res. J. online first (2016)

    Google Scholar 

  • Asdrubali, F., Baldinelli, G.: Thermal transmittance measurements with the hot box method: calibration, experimental procedures, and uncertainty analyses of three different approaches. Energy Buildings 43, 1618–1626 (2011)

    Article  Google Scholar 

  • Bhattacharjee, D., Kothari, K.V.: Heat transfer through woven textiles. Int. J. Heat Mass Transf. 52, 2155–2160 (2009)

    Article  CAS  Google Scholar 

  • Diswat, J., Hes, L., Bal, K.: Thermal resistance of cut pile hand tufted carpet and its prediction. Text. Res. J. online first (2016)

    Google Scholar 

  • Epps, H.H., Goswami, B., Hassenboehler Jr., C.B.: The influence of indoor relative humidity and fabric properties on thermal transmittance of textile draperies. ASHRAE Trans. 90, 104–115 (1984)

    Google Scholar 

  • Hassenboehler Jr., C.B., Vigo, T.L.: A mixed flow thermal transmittance tester for textiles. Text. Res. J. 52, 510–517 (1982)

    Article  Google Scholar 

  • Hes, L.: Non-destructive determination of comfort parameters during marketing of functional garments and clothing. Indian J. Fibre Text. Res. 33, 239–245 (2008)

    CAS  Google Scholar 

  • Hes, L., Araújo, D.M.: Effect of mutual bonding of textile layers on thermal insulation and thermal contact properties of fabric assemblies. Text. Res. J. 66, 245–250 (1996)

    Article  CAS  Google Scholar 

  • Hes, L., Dolezal, I.: New method and equipment for measuring thermal properties of textiles. J. Text. Mach. Soc. Jpn. 42, 124–128 (1989)

    Article  Google Scholar 

  • Hes, L., Stanek, J.: Theoretical and Experimental Analysis of Heat Conductivity for Nonwoven Fabrics. INDA-TEC Transactions, Philadelphia, PA (1989)

    Google Scholar 

  • Hes, L., Kus, Z.: Non-destructive testing of thermophysiological properties of protective clothing. In: ECPC International Conference on Protective Clothing, Montreaux (2003)

    Google Scholar 

  • Huang, J.: Review of heat and water vapor transfer through multilayer fabrics. Text. Res. J. 86, 325–336 (2016)

    Article  CAS  Google Scholar 

  • Jin, X., Zhang, J., Hurren, C., Li, J., Rajkhowa, R., Wang, X.: The effect of fibrous structural difference on thermal insulation properties of biological composites: silkworm cocoons. Text. Res. J. online first (2015)

    Google Scholar 

  • Kofler, P., Herten, A., Heinrich, D., Bottoni, G., Hasler, M., Faulhaber, M., Bechtold, T., Nachbauer, W., Burtscher, M.: Viscose as an alternative to aramid in workwear: influence on endurance performance, cooling, and comfort. Text. Res. J. 83, 2085–2092 (2013)

    Article  Google Scholar 

  • Limare, A., Duvaut, T., Henry, J.F., Bissieux, C.: Non-contact photopyroelectric method applied to thermal and optical characterization of textiles. Four-flux modeling of a scattering sample. Int. J. Therm. Sci. 42, 951–961 (2003)

    Article  CAS  Google Scholar 

  • Lizák, P., Mojumdar, S.C.: Thermal properties of textile fabrics. J. Therm. Anal. Calorim. 112, 1095–1100 (2013)

    Article  Google Scholar 

  • Mangat, M.M., Hes, L., Bajzik, V.: Thermal resistance models of selected fabrics in wet state and their experimental verification. Text. Res. J. 85, 200–210 (2015)

    Article  CAS  Google Scholar 

  • Morrissey, M.P., Rossi, R.M.: The effect of wind, body movement and garment adjustments on the effective thermal resistance of clothing with low and high air permeability insulation. Text. Res. J. 84, 583–592 (2014)

    Article  CAS  Google Scholar 

  • Mumaw, J.R.: Calibrated hot box: an effective means for measuring thermal conductance in large wall sections. In: American Society for Testing and Materials, ASTM STP 544, Heat transmission measurements in thermal insulations, West Conshohocken, pp. 193–211 (1974)

    Google Scholar 

  • OÄŸlakcioÄŸlu, N., Marmarali, A.: Thermal comfort properties of some knitted structures. Fibres Text. East. Eur. 15, 94–96 (2007)

    Google Scholar 

  • Pola, T., Häkkinen, T., Hännikäinen, J., Vanhala, J.: Thermal performance analysis of 13 heat sink materials suitable for wearable electronics applications. Sci. Technol. 3, 67–73 (2013)

    Google Scholar 

  • Puszkarz, A.K., Krucinska, I.: The study of knitted fabric thermal insulation using thermography and finite volume method. Text. Res. J. online first (2016)

    Google Scholar 

  • Ricciardi, P., Belloni, E., Cotana, F.: Innovative panels with recycled materials: thermal and acoustic performance and life cycle assessment. Appl. Energy 134, 150–162 (2014)

    Article  Google Scholar 

  • Richards, M., Mattle, N.: A sweating agile thermal manikin (SAM) developed to test complete clothing systems under normal and extreme conditions, RTO-MP-076, pp. 1–7 (2001)

    Google Scholar 

  • Romeli, D., Barigozzi, G., Esposito, S., Rosace, G., Salesi, G.: High sensitivity measurements of thermal properties of textile fabrics. Polym. Test. 32, 1029–1036 (2013)

    Article  CAS  Google Scholar 

  • Uzun, M.: Processing and characterisation of the copper treated polylactic acid and cotton fabrics: thermophysiological comfort properties. Mater. Sci. 20, 67–72 (2014)

    Google Scholar 

  • Yang, C., Wang, J., Li, L.: A novel approach for developing high thermal conductive artificial leather by utilizing smart electronic materials. Text. Res. J. online first (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ehrmann, A., Blachowicz, T. (2017). Thermal Properties of Textiles. In: Examination of Textiles with Mathematical and Physical Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-47408-3_8

Download citation

Publish with us

Policies and ethics