Skip to main content

Diffractive Effects in Yarns and Fabrics

  • Chapter
  • First Online:
Examination of Textiles with Mathematical and Physical Methods

Abstract

Diffraction and interference of light are two fundamental effects in wave optics with many practical consequences. Optics, in general, consists of geometrical, wave, and quantum parts, and light can be treated from these three perspectives. However, light as a wave and the related wave effects can be directly applied to test textile materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Angelow, A., Bednorz, H., Böttcher, S., Schrader, N., Ehrmann, A.: Optical differentiation between cashmere and other textile fibers by laser diffraction. Indian J. Fiber Text. Res. (accepted) (2015a)

    Google Scholar 

  • Angelow, A., Bednorz, H., Böttcher, S., Schrader, N., Ehrmann, A.: Verfahren zur Art-Bestimmung von Fasern, Patent application DE 10 2015 000 281A1 (2015b)

    Google Scholar 

  • Augustin-Jean, L., Alpermann, B.: The Political Economy of Agro-Food Markets in China: The Social Construction of the Markets in an Era of Globalization. Palgrave Macmillan, Basingstoke (2013)

    Google Scholar 

  • Born, W., Wolf, E.: Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  • Brančíiak, J.V., Datyner, A.: The measurement of swelling of wool fibers in solvents by laser-beam diffraction. Text. Res. J. 47, 662–665 (1977)

    Google Scholar 

  • Demir, M.M., Yilgor, I., Yilgor, E., Erman, B.: Electrospinning of polyurethane fibers. Polymer 43, 3303–3309 (2002)

    Article  CAS  Google Scholar 

  • Ehrmann, A.: Optical fiber examination by confocal laser scanning microscopy. In: Mondal, M.I.H. (ed.) Textiles: History, Properties and Performance and Applications, pp. 531–546. Nova Science, New York (2014)

    Google Scholar 

  • Fabric University: Burn test. http://www.fabriclink.com/university/burntest.cfm. Last Accessed 15 July 2016 (2016)

  • Gong, R.H., Newton, A.: Image-analysis techniques Part II: The measurement of fibre orientation in nonwoven fabrics. J. Text. Inst. 87, 371–388 (1996)

    Article  CAS  Google Scholar 

  • Grecka, M., Rizvi, A., Ehrmann, A., Blums, J.: Influence of abrasion and soaking on reflective properties of Cu and Al coated textiles. In: Proceedings of Aachen-Dresden International Textile Conference (2013)

    Google Scholar 

  • Gupta, S.D., Ghosh, N., Banerjee, A.: Wave Optics: Basic Concepts and Contemporary Trends. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  • Kumar, S., Doshi, H., Srinivasarao, M., Park, J.O., Schiraldi, D.A.: Fibers from polypropylene/nano carbon fiber composites. Polymer 43, 1701–1703 (2002)

    Article  CAS  Google Scholar 

  • Lynch, L.J., Thomas, N.: Optical diffraction profiles of single fibers. Text. Res. J. 41, 568–572 (1971)

    Article  CAS  Google Scholar 

  • Ma, H., Zeng, J., Realff, M.L., Kumar, S., Schiraldi, D.A.: Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos. Sci. Technol. 63, 1617–1628 (2003)

    Article  CAS  Google Scholar 

  • Mallik-Goswami, B., Datta, A.K.: Optical imaging technique for defect detection in fabric. Indian J. Fibre Text. Res. 23, 277–280 (1998a)

    Google Scholar 

  • Mallik-Goswami, B., Datta, A.K.: Fast Fourier transform technique for identification of the structural properties and irregularities in fabric. J. Inst. Eng. India 7, 1–4 (1998b)

    Google Scholar 

  • Mallik-Goswami, B., Datta, A.K.: Detecting defects in fabric with laser-based morphological image processing. Text. Res. J. 70, 758–762 (2000)

    Article  CAS  Google Scholar 

  • Munawar, S.S., Umemura, K., Kawai, S.: Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J. Wood Sci. 53, 108–113 (2007)

    Article  Google Scholar 

  • Nielson, K.J.: Window Treatments. Wiley, New York (1990)

    Google Scholar 

  • Phan, K.-H., Wortmann, F.J.: Quality assessment of goat hair for textile use. In: Franck, R.R. (ed.) Silk, Mohair, Cashmere and Other Luxury Fibres. Woodhead Publishing Series in Textiles, Cambridge (2001)

    Google Scholar 

  • Phong, B.-T.: Illumination for computer generated images. Comm. ACM 18, 311–317 (1975)

    Article  Google Scholar 

  • Ribolzi, S., Mercklé, J., Gresser, J., Exbrayat, P.E.: Real-time fault detection on textiles using opto-electronic processing. Text. Res. J. 63, 61–71 (1993)

    Article  Google Scholar 

  • Shlyakhtenko, P.G.: Diffraction method of monitoring the bend of threads in textile webs. J. Opt. Technol. 67, 1038–1042 (2000)

    Article  Google Scholar 

  • Shlyakhtenko, P.G., Vetrova, Y.N., Rudin, A.E., Sukharev, P.A., Nefedov, V.P.: A diffraction method of monitoring the angular distribution of the fibers in the structure of a flat fibrous material. J. Opt. Technol. 79, 599–602 (2012)

    Article  Google Scholar 

  • Siegel, M.W., Grundy, R.H.: Apparatus and methods for measuring the diameter of a moving elongated material. US patent 5015867 A (1989)

    Google Scholar 

  • Sodomka, L., Komrska, J.: Laser diffraction measurements of the parameters of fine-mesh woven textiles. Text. Res. J. 61, 232–236 (1991)

    Article  Google Scholar 

  • Toba, E.: Determination of the autocorrelation function of woven fabrics using laser speckle. Text. Res. J. 50, 238–244 (1980)

    Article  Google Scholar 

  • Whitted, T.: An improved illumination model for shaded display. ACM Siggraph 2005 Courses 4 (2005)

    Google Scholar 

  • Wood, E.J.: Applying Fourier and associated transforms to pattern characterization in textiles. Text. Res. J. 60, 212 (1990)

    Article  Google Scholar 

  • Xu, B.: Identifying fabric structures with fast Fourier transform techniques. Text. Res. J. 66, 496–506 (1996)

    Article  CAS  Google Scholar 

  • Zhang, Y.F., Bresse, R.R.: Fabric defect detection and classification using image analysis. Text. Res. J. 65, 1–9 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ehrmann, A., Blachowicz, T. (2017). Diffractive Effects in Yarns and Fabrics. In: Examination of Textiles with Mathematical and Physical Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-47408-3_6

Download citation

Publish with us

Policies and ethics