Skip to main content

Magnetic Yarns, Fabrics, and Coatings

  • Chapter
  • First Online:
Examination of Textiles with Mathematical and Physical Methods

Abstract

A less usual but also quite interesting form of functionalizing fibers, yarns, or fabrics, compared with conductivity, is magnetism. Magnetism can occur in different forms, intrinsically or as a finishing, in thicker or thinner layer, more or less strong, durable or changeable … While conductivity is clearly defined by an electrical resistance or a value of the conductivity and can be measured with a few simple devices, magnetism can occur in more different forms, and measurements are normally not easy. However, magnetic textiles can be used for a broad variety of applications which are often not as evident as applications of conductive textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Akman, O., Kavas, H., Baykal, A., Toprak, M.S., Coruh, A., Aktas, B.: Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber. J. Magn. Magn. Mat. 327, 151–158 (2013)

    Article  CAS  Google Scholar 

  • Aksit, A.C., Onar, N., Ebeoglugil, M.F., Birlik, I., Celik, E., Ozdemir, I.: Electromagnetic and electrical properties of coated cotton fabric with barium ferrite doped polyaniline film. J. Appl. Polym. Sci. 113, 358–366 (2009)

    Article  CAS  Google Scholar 

  • Bai, Q., Langley, R.: Crumpled integrated AMC antenna. Electron. Lett. 45, 662–663 (2009)

    Article  Google Scholar 

  • Bayhan, S.: Band-shaped closure device for cape or bib, has mutually attracting magnetic units, where magnetic units are arranged watertight on band-shaped water-proof carrier, and filler is arranged to carrier between enclosed magnetic units, Patent CH706946-A2 (2014)

    Google Scholar 

  • Benesovsky, P.: New System for Brand Protection of Textiles Based on Magnetically Detectable Prints, 4th ITC & CD (2008)

    Google Scholar 

  • Bhukal, S., Sharma, R., Mor, S., Singhal, S.: Mg-Co-Zn magnetic nanoferrites: characterization and their use for remediation of textile wastewater. Superlattices Microstruct. 77, 134–151 (2015)

    Article  CAS  Google Scholar 

  • Brzezinski, S., Rybicki, T., Karbownik, I., Malinowska, G., Rybicki, E., Szugajew, L., Lao, M., Sledzinska, K.: Textile multi-layer systems for protection against electromagnetic radiation. Fibres Text. East. Eur. 17, 66–71 (2009)

    CAS  Google Scholar 

  • Costandache, D., Baltag, O.: Detection of ferromagnetic inclusions. Sens. Lett. 7, 420–422 (2009)

    Article  Google Scholar 

  • Donahue, M.J., Porter, D.G.: OOMMF User’s Guide, Version 1.0, Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (1999)

    Google Scholar 

  • Dunand, D.C., Mullner, P.: Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 23, 216–232 (2011)

    Article  CAS  Google Scholar 

  • Ehrmann, A.: Examination and Simulation of New Magnetic Materials for the Possible Application in Memory Cells. Logos Verlag Berlin, Berlin (2014)

    Google Scholar 

  • Ehrmann, A., Blachowicz, T.: Micromagnetic simulation of fibers and coatings on textiles. J. Inst. Eng. (India) Ser. E 96, 145–150 (2015)

    Article  CAS  Google Scholar 

  • Etre, K., Stein, R., Dunn, E., Commander, J.: Short communication: rare attraction: evaluating magnetic primers for mounting textiles on rigid backboards with rare earth magnets. J. Am. Inst. Conserv. 53, 211–218 (2014)

    Article  Google Scholar 

  • Fang, J., Wang, H.X., Xue, Y.H., Wag, X.A., Lin, T.: Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles. ACS Appl. Mater. Interfaces 2, 1449–1455 (2010)

    Article  CAS  Google Scholar 

  • Farshad, M., Clemens, F., Le Roux, M.: Magnetoactive polymer composite fibers and fabrics – processing and mechanical characterization. J. Thermoplast. Compos. Mater. 20, 65–74 (2007)

    Article  CAS  Google Scholar 

  • Fiedler, M.: Authenticity marking set for identifying authenticity of products, has multiple authenticity marking materials which are different from each other and are provided in form of paint or ink on carrier material, Patents DE102008056167-A1; WO2010052270-A1; EP2352880-A1 (2010)

    Google Scholar 

  • Ge, M., Song, X., Zhou, B.: Low-frequency magnetic fabric shielding efficiency test device, has cylinder fixed with clamp, test station formed with circular-hole, and electric current source fixed with magnetic flux unit that is formed with deep groove, Patent CN203732646-U (2014)

    Google Scholar 

  • Grabowska, K.E., Marciniak, K., Ciesielska-Wrobel, I.L.: The analysis of attenuation of electromagnetic field by woven structures based on hybrid fancy yarns. Text. Res. J. 81, 1578–1593 (2011)

    Article  CAS  Google Scholar 

  • Grosu, M.C., Lupu, I.G., Cramariuc, O.: Magnetic cotton yarns – optimization of magnetic properties. J. Text. Inst. (online first) (2015)

    Google Scholar 

  • Hansen, N.L., Barabasch, A., Distelmaier, M., Ciritsis, A., Kuehnert, N., Otto, J., Conze, J., Klinge, U., Hilgers, R.D., Kuhl, C.K., Kramer, N.A.: First in-magnetic resonance visualization of surgical mesh implants for inguinal hernia treatment. Invest. Radiol. 48, 770–778 (2013)

    Article  CAS  Google Scholar 

  • Ho, T., Ghochaghi, N., Tepper, G.: Development of magnetic fabrics with tunable hydrophobicity. J. Appl. Polym. Sci. 130, 2352–2358 (2013)

    Article  CAS  Google Scholar 

  • Hosseini, S.H., Sadeghi, M.: Investigation of microwave absorbing properties for magnetic nanofiber of polystyrene polyvinylpyrrolidone. Curr. Appl. Phys. 14, 928–931 (2014)

    Article  Google Scholar 

  • Jiang, Z.H., Brocker, D.E., Sieber, P.E., Werner, D.H.: A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices. IEEE Trans. Antennas Propag. 62, 4021–4030 (2014)

    Article  Google Scholar 

  • Kamardin, K., Rahim, M.K.A., Samsuri, N.A., Jalil, M.E., Majid, H.A.: Transmission enhancement using textile artificial magnetic conductor with coplanar waveguide monopole antenna. Microw. Opt. Technol. Lett. 57, 197–200 (2015)

    Article  Google Scholar 

  • Karthikeyeni, S., Vijayakumar, T.S., Vasanth, S., Ganesh, A., Vignesh, V., Akalya, J., Thirumurugan, R., Subramanian, P.: Decolourisation of direct orange S dye by ultra sonication using iron oxide nanoparticles. J. Exp. Nanosci. 10, 199–208 (2015)

    Article  CAS  Google Scholar 

  • Kauffmann-Weiss, S., Scheerbaum, N., Liu, J., Klauss, H., Schultz, L., Mäder, E., Häßler, R., Heinrich, G., Gutfleisch, O.: Reversible magnetic field induced strain in Ni2MnGa-polymer-composites. Adv. Eng. Mater. 14, 20–27 (2012)

    Article  CAS  Google Scholar 

  • Kim, J., Choi, S.E., Lee, H., Kwon, S.: Magnetochromatic microactuators for a micropixellated color-changing surface. Adv. Mater. 25, 1415–1419 (2012)

    Article  Google Scholar 

  • Kramer, N.A., Donker, H.C.W., Otto, J., Hodenius, M., Senegas, J., Slabu, I., Klinge, U., Baumann, M., Müllen, A., Obolenski, B., Günther, R.W., Krombach, G.A.: A concept for magnetic resonance visualization of surgical textile implants. Invest. Radiol. 45, 477–483 (2010)

    Article  Google Scholar 

  • Leng, J.S., Lu, H.B., Liu, Y.J., Huang, W.M., Du, S.Y.: Shape-memory polymers-a class of novel smart materials. MRS Bull. 34, 848–855 (2009)

    Article  Google Scholar 

  • Leng, J.S., Lan, X., Liu, Y.J., Du, S.Y.: Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011)

    Article  CAS  Google Scholar 

  • Mantash, M., Tarot, A.C., Collardey, S., Mahdjoubi, K.: Investigation of flexible textile antennas and AMC reflectors. Int. J. Antennas Propag. 2012, 236505 (2012)

    Article  Google Scholar 

  • Meng, H., Li, G.Q.: A review of stimuli-responsive shape memory polymer composites. Polymer 54, 2199–2221 (2013)

    Article  CAS  Google Scholar 

  • Meng, M., Qi, L.: Electromagnetic-wave shielding fabric comprises a conductive fiber, namely stainless steel fiber, silver fiber, aluminum fiber, copper fiber, nickel fiber or a copper-plated fiber, and a absorbing fiber e.g. magnetic powder and metal powder, Patent CN102618994-A (2012)

    Google Scholar 

  • Mertens, M.E., Koch, S., Schuster, P., Wehner, J., Wu, Z.J., Gremse, F., Schulz, V., Rongen, L., Wolf, F., Frese, J., Gesche, V.N., van Zandvoort, M., Mela, P., Jockenhoevel, S., Kiessling, F., Lammers, T.: USPIO-labeled textile materials for non-invasive MR imaging of tissue-engineered vascular grafts. Biomaterials 39, 155–163 (2015)

    Article  CAS  Google Scholar 

  • Mistik, S.I., Shah, T., Hadimani, R.L., Siores, E.: Compression and thermal conductivity characteristics of magnetorheological fluid-spacer fabric smart structures. J. Intell. Mater. Syst. Struct. 23, 1277–1283 (2012)

    Article  Google Scholar 

  • Mittal, H., Mishra, S.B.: Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr. Polym. 101, 1255–1264 (2014)

    Article  CAS  Google Scholar 

  • Narian, E., Arami, M., Bahrami, H., Pajootan, E.: Modification of nickel ferrite with cationic surfactant: dye removal from textile wastewater using magnetic separation. J. Environ. Eng. 141, U50–U59 (2015)

    Article  Google Scholar 

  • Raad, H.R., Abbosh, A.I., Al-Rizzo, H.M., Rucker, D.G.: Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans. Antennas Propag. 61, 524–531 (2013)

    Article  Google Scholar 

  • Rau, M., Iftemie, A., Baltag, O., Costandache, D.: The study of the electromagnetic shielding properties of a textile material with amorphous microwire. Adv. Electr. Comput. Eng. 11, 17–22 (2011)

    Article  Google Scholar 

  • Rubacha, M., Zieba, J.: Magnetic textile elements. Fibres Text. East. Eur. 14, 49–53 (2006)

    CAS  Google Scholar 

  • Rubacha, M., Zieba, J.: Magnetic cellulose fibres and their application in textronics. Fibres Text. East. Eur. 15, 101–104 (2007)

    CAS  Google Scholar 

  • Scholz, W., Fidler, J., Schrefl, T., Suess, D., Dittrich, R., Forster, H., Tsiantos, V.: Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mat. Sci. 28, 366 (2003)

    Article  CAS  Google Scholar 

  • Sedlatzek, F.: Magnetic wallpaper useful as hand-decorative attachments e.g. boards in exhibition booths and shop windows, comprises carrier material, and magnetic surface layer that contains PVC plastisol and magnetic particles, Patent DE102010020922-A1 (2011)

    Google Scholar 

  • Sirav, B., Sezgin, G., Seyhan, N.: Extremely low-frequency magnetic fields of transformers and possible biological and health effects. Electromagn. Biol. Med. 33, 302–306 (2014)

    Article  CAS  Google Scholar 

  • Slabu, I., Güntherodt, G., Schmitz-Rode, T., Krämer, N., Donker, H., Otto, J., Kuhl, C., Klinge, U., Baumann, M.: Investigation of magnetic nanoparticles incorporated within textile hernia implants. Biomed. Eng. 57, 750 (2012)

    Google Scholar 

  • Tang, X., Tang, Y.: Electromagnetic wave absorbing radiation proof magnetic healthcare composite material inorganic substance includes maghemite, copper oxide, zinc oxide, manganese dioxide, chromium oxide, nickel oxide, cobalt oxide and magnesium oxide, Patent CN104045867-A (2014)

    Google Scholar 

  • Tsuda, O.: Magnetic shielding paper used in e.g. electronic device, consists of metal material having magnetic shielding performance, Patent JP2014090142-A (2014)

    Google Scholar 

  • Verplanck, N., Coffinier, Y., Thomy, V., Boukherroub, R.: Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res. Lett. 2, 577–596 (2007)

    Article  CAS  Google Scholar 

  • Virili, M., Rogier, H., Alimenti, F., Mezzanotte, P., Roselli, L.: Wearable textile antenna magnetically coupled to flexible active electronic circuits. IEEE Antennas Wirel. Propag. Lett. 13, 209–212 (2014)

    Article  Google Scholar 

  • Wang, Y.G., Yao, M.C., Chan, Y.T., Zuo, Y.H., Zhang, X.D., Cui, L.F.: General synthesis of magnetic mesoporous FeNi/graphitic carbon nanocomposites and their application for dye adsorption. J. Alloys Compd. 627, 7–12 (2015)

    Article  Google Scholar 

  • Weber, M.O., Akter, F., Ehrmann, A.: Shielding of static magnetic fields by textiles. Ind. Text. 64, 184–187 (2013)

    Google Scholar 

  • Yan, S., Soh, P.J., Vandenbosch, G.A.E.: Low-profile dual-band textile antenna with artificial magnetic conductor plane. IEEE Trans. Antennas Propag. 62, 6487–6490 (2014)

    Article  Google Scholar 

  • You, F.: Production error detect system used in textile manufacturing industry, has magnetic ink detect and identify sub-system that is provided with control center connected with magnetic detector and alarm device and photoelectric sensor, Patent CN203444492-U (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ehrmann, A., Blachowicz, T. (2017). Magnetic Yarns, Fabrics, and Coatings. In: Examination of Textiles with Mathematical and Physical Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-47408-3_3

Download citation

Publish with us

Policies and ethics