Skip to main content

Conductive Yarns, Fabrics, and Coatings

  • Chapter
  • First Online:
Examination of Textiles with Mathematical and Physical Methods

Abstract

Conductive textiles are nowadays used in a broad variety of applications in the area of smart textiles, starting from data and energy transfer lines to textile sensors to shielding of electromagnetic waves. They are necessary in textile capacitors, batteries, solar cells, and electroluminescent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Aumann, S., Trummer, S., Brücken, A., Ehrmann, A., Büsgen, A.: Conceptual design of a sensory shirt for fire-fighters. Text. Res. J. 84, 1661–1665 (2014)

    Article  CAS  Google Scholar 

  • Berry, B.: Investigation of electrical and impact properties of carbon fiber textile composites. Dissertation thesis, University of Iowa (2014)

    Google Scholar 

  • Bhat, N.V., Seshadri, D.T., Nate, M.M., Gore, A.V.: Development of conductive cotton fabrics for heating devices. Appl. Polym. Sci. 102, 4690–4695 (2006)

    Article  CAS  Google Scholar 

  • Bilousova, K., Dering, E., Zuev, A., Ehrmann, A., Büsgen, A.: Examination of the suitability of carbon fiber yarns for data transmission. Tech Text 57, E168–169 (2014)

    Google Scholar 

  • Cho, G., Jeong, K., Paik, M.J., Kwun, Y., Sung, M.: Performance evaluation of textile-based electrodes and motion sensors for smart clothing. IEEE Sens. J. 11, 3183–3193 (2011)

    Article  Google Scholar 

  • Christie, J.H., Woodhead, I.M.: A new model of DC conductivity of hygroscopic solids, Part I: Cellulosic materials. Text. Res. J. 72, 273–278 (2002)

    Article  CAS  Google Scholar 

  • Christie, J.H., Woodhead, I.M., Krenek, S., Sedcole, J.R.: A new model of DC conductivity of hygroscopic solids, Part II: Wool and silk. Text. Res. J. 72, 303–308 (2002)

    Article  CAS  Google Scholar 

  • Cucchi, I., Boschi, A., Arosio, C., Bertini, F., Freddi, G., Catellani, M.: Bio-based conductive composites: preparation and properties of polypyrrole (PPy)-coated silk fabrics. Synth. Met. 159, 246–253 (2009)

    Article  CAS  Google Scholar 

  • Ding, Y., Invernale, M.A., Sotzing, G.A.: Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Appl. Mater. Interfaces 2, 1588–1593 (2010)

    Article  CAS  Google Scholar 

  • Ehrmann, A., Heimlich, F., Brücken, A., Weber, M.O., Haug, R.: Suitability of knitted fabrics as elongation sensors subject to structure, stitch dimension and elongation direction. Text. Res. J. 84, 2006–2012 (2014)

    Article  CAS  Google Scholar 

  • Fehse, K., Schwartz, G., Walzer, K., Leo, K.: Combination of a polyaniline anode and doped charge transport layers for high-efficiency organic light emitting diodes. J. Appl. Phys. 101, 124509 (2007)

    Article  Google Scholar 

  • Gronendaal, L., Jonas, F., Freitag, D., Pielartzik, H., Reynolds, J.R.: Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481–494 (2000)

    Article  Google Scholar 

  • Herrmann, A., Fiedler, J., Ehrmann, A., Grethe, T., Schwarz-Pfeiffer, A., Blachowicz, T.: Examination of the sintering process dependent micro- and nanostructures of TiO2 on textile substrates. In: Proceedings of SPIE 9898, Photonics for Solar Energy Systems VI, 98980S (2016)

    Google Scholar 

  • Hersh, S.P., Montgomery, D.J.: Electrical resistance measurements on fibers and fiber assemblies. Text. Res. J. 22, 805–818 (1952)

    Article  Google Scholar 

  • Jones, B.: Resistance measurements on play-doh TM. Phys. Teach. 31, 48–49 (1993)

    Article  Google Scholar 

  • Kaynak, A., Najar, S.S., Foitzik, R.C.: Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole. Synth. Met. 158, 1–5 (2008)

    Article  CAS  Google Scholar 

  • Kim, J.Y., Jung, J.H., Lee, D.E., Joo, J.: Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 126, 311–316 (2002)

    Article  CAS  Google Scholar 

  • Li, L., Au, W.M., Li, Y., Wan, K.M., Chung, W.Y., Wong, K.S.: A novel design method for intelligent clothing embedded sensor system based on knitting technology and garment design. Text. Res. J. 79, 1670–1679 (2009)

    Article  CAS  Google Scholar 

  • Linz, T., Kallmayer, C., Aschenbrenner, R., Reichl, H.: Fully integrated EKG shirt based on embroidered electrical interconnections with conductive yarn and miniaturized flexible electronics. In: Proceedings of International Workshop on Wearable and Implantable Body Sensor Networks, pp. 4–26 (2006)

    Google Scholar 

  • Mani, G.K., Rayappan, J.B.B., Bisoyi, D.K.: Synthesis and characterization of kapok fibers and its composites. J. Appl. Sci. 12, 1661–1665 (2012)

    Article  CAS  Google Scholar 

  • Normann, M., Kyosev, Y., Ehrmann, A., Schwarz-Pfeiffer, A.: Multilayer textile-based woven batteries. In: Kyosev, Y. (ed.) Recent Developments in Braiding and Narrow Weaving, pp. 129–136. Springer, Berlin (2016)

    Chapter  Google Scholar 

  • Obermann, M., Ellouz, M., Aumann, S., Martens, Y., Bartelt, P., Klöcker, M., Kordisch, T., Ehrmann, A., Weber, M.O.: Non-destructive X-ray examination of weft knitted wire structures. In: IOP Conference Series: Materials Science and Engineering vol. 141, p. 012007 (2016)

    Google Scholar 

  • Onar, N., Aksit, A.C., Ebeoglugin, M.F., Birlik, I., Celik, E., Ozdemir, I.: Structural, electrical, and electromagnetic properties of cotton fabrics coated with Polyaniline and Polypyrrole. J. Appl. Polym. Sci. 114, 2003–2010 (2009)

    Article  CAS  Google Scholar 

  • Ouyang, J., Chu, C.-W., Chen, F.-C., Xu, Q., Yang, Y.: High-conductivity poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 15, 203–208 (2005)

    Article  CAS  Google Scholar 

  • Pacelli, M., Loriga, G., Taccini, N., Paradiso, R.: Sensing fabrics for monitoring physiological and biomechanical variables: E-textile solutions. In: Proceedings of the 3rd IEEE-EMBS international summer school and symposium on medical devices and biosensors, Boston (2006)

    Google Scholar 

  • Pola, T., Vanhala, J.: Textile electrodes in ECG measurement. In: 3rd International conference on intelligent sensors, sensor networks and information, pp. 635–639 (2007)

    Google Scholar 

  • Rattfält, L., Lindén, M., Hult, P., Berglin, L., Ask, P.: Electrical characteristics of conductive yarns and textile electrodes for medical applications. Med. Biol. Eng. Comput. 45, 1251–1257 (2007)

    Article  Google Scholar 

  • Saghaei, J., Fallahzadeh, A., Saghaei, T.: ITO-free organic solar cells using highly conductive phenol-treated PEDOT:PSS anodes. Org Electron 24, 188–194 (2015)

    Article  CAS  Google Scholar 

  • Schroder, D.K.: Semiconductor Material and Device Characterization. Wiley, New York (1990)

    Google Scholar 

  • Schuetze, A.P., Lewis, W., Brown, C., Geerts, W.J.: A laboratory on the four-point probe technique. Am. J. Phys. 72, 149–153 (2004)

    Article  Google Scholar 

  • Song, H.-Y., Lee, J.-H., Kang, D., Cho, H., Cho, H.-S., Lee, J.-W., Lee, Y.-J.: Textile electrodes of jacquard woven fabrics for biosignal measurement. J. Text. Inst. 101, 758–770 (2010)

    Article  CAS  Google Scholar 

  • Stapleton, A.J., Yambem, S.D., Johns, A.H., Afre, R.A., Ellis, A.V., Shapter, J.G., Andersson, G.G., Quinton, J.S., Burn, P.L., Meredith, P., Lewis, D.A.: Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Sci. Technol. Adv. Mater. 16, 025002 (2015)

    Article  Google Scholar 

  • Tokarska, M., Frydrysiak, M., ZiÄ™ba, J.: Electrical properties of flat textile materials as inhomogeneous and anisotropic structure. J. Mater. Sci.: Mater. Electron. 24, 5061–5068 (2013)

    CAS  Google Scholar 

  • Valdes, L.B.: Resistivity measurements on germanium for transistors. Proc. IRE 42, 420–427 (1954)

    Article  Google Scholar 

  • Wang, J., Long, H., Soltanian, S., Servati, P., Ko, F.: Electro-mechanical properties of knitted wearable sensors: Part 2 – Parametric study and experimental verification. Text. Res. J. 84, 200–213 (2014)

    Article  CAS  Google Scholar 

  • Xia, Y., Ouyang, J.: Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids. ACS Appl. Mater. Interfaces 2, 474–483 (2010)

    Article  CAS  Google Scholar 

  • Yildiz, Z., Usta, I., Gungor, A.: Investigation of the electrical properties and electromagnetic shielding effectiveness of polypyrrole coated cotton yarns. Fibres Text. East. Eur. 21, 32–37 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ehrmann, A., Blachowicz, T. (2017). Conductive Yarns, Fabrics, and Coatings. In: Examination of Textiles with Mathematical and Physical Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-47408-3_2

Download citation

Publish with us

Policies and ethics