Skip to main content

Modeling User Preference from Rating Data Based on the Bayesian Network with a Latent Variable

  • Conference paper
  • First Online:
Web-Age Information Management (WAIM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9998))

Included in the following conference series:

Abstract

Modeling user behavior and latent preference implied in rating data are the basis of personalized information services. In this paper, we adopt a latent variable to describe user preference and Bayesian network (BN) with a latent variable as the framework for representing the relationships among the observed and the latent variables, and define user preference BN (abbreviated as UPBN). To construct UPBN effectively, we first give the property and initial structure constraint that enable conditional probability distributions (CPDs) related to the latent variable to fit the given data set by the Expectation-Maximization (EM) algorithm. Then, we give the EM-based algorithm for constraint-based maximum likelihood estimation of parameters to learn UPBN’s CPDs from the incomplete data w.r.t. the latent variable. Following, we give the algorithm to learn the UPBN’s graphical structure by applying the structural EM (SEM) algorithm and the Bayesian Information Criteria (BIC). Experimental results show the effectiveness and efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Netica Application (2016). http://www.norsys.com/netica.html

  2. MovieLens Dataset (2016). http://grouplens.org/datasets/movielens/1m

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  4. Breese, J., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI 1998, pp. 43–52. Morgan Kaufmann (1998)

    Google Scholar 

  5. Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from Incomplete Data via the EM algorithm. J. Royal Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Friedman, N.: Learning belief networks in the presence of missing values and hidden variables. In: ICML 1997, pp. 452–459. ACM (1997)

    Google Scholar 

  7. Friedman, N.: The Bayesian structural EM algorithm. In: UAI 1998, pp. 129–138. Morgan Kaufmann (1998)

    Google Scholar 

  8. Elidan, G., Lotner, N., Friedman, N., Koller, D.: Discovering Hidden variables: a structure-based approach. In: NIPS 2000, pp. 479–485 (2000)

    Google Scholar 

  9. Huang, Y., Bian, L.: A bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the internet. Expert Syst. Appl. 36(1), 933–943 (2009)

    Article  Google Scholar 

  10. Huete, J., Campos, L., Fernandez-luna, J.M.: Using structural content information for learning user profiles. In: SIGIR 2007, pp. 38–45 (2007)

    Google Scholar 

  11. Kim, J., Jun, C.: Ranking evaluation of institutions based on a bayesian network having a latent variable. Knowl. Based Syst. 50, 87–99 (2013)

    Article  Google Scholar 

  12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  13. Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)

    Article  Google Scholar 

  14. Liu, T., Zhang, N.L., Chen, L., Liu, A.H., Poon, L., Wang, Y.: Greedy learning of latent tree models for multidimensional clustering. Mach. Learn. 98(1–2), 301–330 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pearl, J.: Fusion, propagation, and structuring in belief networks. Artif. Intell. 29(3), 241–288 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salakhutdinov, R., Mnih, A.: Probabilistic Matrix Factorization. In: NIPS 2007, pp. 1257–1264 (2007)

    Google Scholar 

  17. Tan, F., Li, L., Zhang, Z., Guo, Y.: A multi-attribute probabilistic matrix factorization model for personalized recommendation. In: Dong, X.L., Yu, X., Li, J., Sun, Y. (eds.) WAIM 2015. LNCS, vol. 9098, pp. 535–539. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21042-1_57

    Chapter  Google Scholar 

  18. Yin, H., Cui, B., Chen, L., Hu, Z., Huang, Z.: A Temporal context-aware model for user behavior modeling in social media systems. In: SIGMOD 2014, pp. 1543–1554. ACM (2014)

    Google Scholar 

  19. Yu, K., Zhang, B., Zhu, H., Cao, H., Tian, J.: Towards personalized context-aware recommendation by mining context logs through topic models. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012. LNCS (LNAI), vol. 7301, pp. 431–443. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30217-6_36

    Chapter  Google Scholar 

  20. Yue, K., Fang, Q., Wang, X., Li, J., Liu, W.: A parallel and incremental approach for data-intensive learning of bayesian networks. IEEE Trans. Cybern. 45(12), 2890–2904 (2015)

    Article  Google Scholar 

  21. Zhao, Z., Cheng, Z., Hong, L., Chi, E.H.: Improving user topic interest profiles by behavior factorization. In: WWW 2015, pp. 1406–1416. ACM (2015)

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (Nos. 61472345, 61562090, 61462056, 61402398), Natural Science Foundation of Yunnan Province (Nos. 2014FA023, 2013FB009, 2013FB010), Program for Innovative Research Team in Yunnan University (No. XT412011), and Program for Excellent Young Talents of Yunnan University (No. XT412003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gao, R., Yue, K., Wu, H., Zhang, B., Fu, X. (2016). Modeling User Preference from Rating Data Based on the Bayesian Network with a Latent Variable. In: Song, S., Tong, Y. (eds) Web-Age Information Management. WAIM 2016. Lecture Notes in Computer Science(), vol 9998. Springer, Cham. https://doi.org/10.1007/978-3-319-47121-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47121-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47120-4

  • Online ISBN: 978-3-319-47121-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics