Skip to main content

A Myriad of Periodic Solutions

  • Chapter
  • First Online:
Playing Around Resonance

Abstract

In this chapter we will consider two types of situations where the Poincaré–Birkhoff Theorem can be successfully applied in order to prove the existence of several periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A similar technique has been used in the proof of Theorem 5.6.1.

Bibliography

  1. H. Amann, Saddle points and multiple solutions of differential equations, Math. Z. 169 (1979), 127–166.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Amann and E. Zehnder, Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 7 (1980), 539–603.

    MathSciNet  MATH  Google Scholar 

  3. A. Bahri and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math. 152 (1984), 143–197.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bahri and H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984), 403–442.

    Article  MathSciNet  MATH  Google Scholar 

  5. M.L. Bertotti, Forced oscillations of asymptotically linear Hamiltonian systems, Boll. Un. Mat. Ital. B (7) 1 (1987), 729–740.

    Google Scholar 

  6. A. Boscaggin, Subharmonic solutions of planar Hamiltonian systems: a rotation number approach, Adv. Nonlinear Stud. 11 (2011), 77–103.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré–Birkhoff theorem, Nonlinear Anal. 74 (2011), 4166–4185.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Boscaggin and R. Ortega, Monotone twist maps and periodic solutions of systems of Duffing type, Math. Proc. Cambridge Philos. Soc. 157 (2014), 279–296.

    Article  MathSciNet  MATH  Google Scholar 

  9. G.J. Butler, The Poincaré–Birkhoff “twist” theorem and periodic solutions of second-order nonlinear differential equations, in: Differential equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, 1979), pp. 135–147, Academic Press, New York, 1980.

    Google Scholar 

  10. P. Buttazzoni and A. Fonda, Periodic perturbations of scalar second order differential equations, Discrete Contin. Dyn. Syst. 3 (1997), 451–455.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Capietto, J. Mawhin and F. Zanolin, A continuation approach to superlinear periodic boundary value problems, J. Differential Equations 88 (1990), 347–395.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Castro and A.C. Lazer, On periodic solutions of weakly coupled systems of differential equations, Boll. Un. Mat. Ital. B (5) 18 (1981), 733–742.

    Google Scholar 

  13. C.V. Coffman and D.F. Ullrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math. 71 (1967), 385–392.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.A. del Pino, R.F. Manásevich and A. Murúa, On the number of 2π periodic solutions for u ′ ′ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem, J. Differential Equations 95 (1992), 240–258.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Ding and F. Zanolin, Periodic solutions of Duffing’s equations with superquadratic potential, J. Differential Equations 95 (1992), 240–258.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Ding and F. Zanolin, Subharmonic solutions of second order nonlinear equations: a time-map approach, Nonlinear Anal. 20 (1993), 509–532.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Ding and F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka–Volterra type, World Congress of Nonlinear Analysts ’92 (Tampa, FL, 1992), 395–406, de Gruyter, Berlin, 1996.

    Google Scholar 

  18. I. Ekeland, Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Differential Equations 34 (1979), 523–534.

    Google Scholar 

  19. A. Fonda, M. Garrione and P. Gidoni, Periodic perturbations of Hamiltonian systems, Adv. Nonlinear Anal., in press (doi: 10.1515/anona-2015-0122).

    Google Scholar 

  20. A. Fonda and L. Ghirardelli, Multiple periodic solutions of scalar second order differential equations, Nonlinear Anal. 72 (2010), 4005–4015.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Fonda and L. Ghirardelli, Multiple periodic solutions of Hamiltonian systems in the plane, Topol. Methods Nonlinear Anal. 36 (2010), 27–38.

    MathSciNet  MATH  Google Scholar 

  22. A. Fonda and M. Ramos, Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities, J. Differential Equations 109 (1994), 354–372.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Fonda, M. Ramos and M. Willem, Subharmonic solutions for second order differential equations, Topol. Methods Nonlinear Anal. 1 (1993), 49–66.

    MathSciNet  MATH  Google Scholar 

  24. A. Fonda, M. Sabatini and F. Zanolin, Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré–Birkhoff Theorem, Topol. Methods Nonlinear Anal. 40 (2012), 29–52.

    MathSciNet  MATH  Google Scholar 

  25. A. Fonda, Z. Schneider and F. Zanolin, Periodic oscillations for a nonlinear suspension bridge model, J. Comp. Appl. Math. 52 (1994), 113–140.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Fonda and A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differential Equations 260 (2016), 2150–2162.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Fonda and R. Toader, Periodic solutions of pendulum-like Hamiltonian systems in the plane, Adv. Nonlinear Stud. 12 (2012), 395–408.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Fonda and A.J. Ureña, A higher dimensional Poincaré – Birkhoff theorem for Hamiltonian flows. Ann. Inst. H. Poincaré Anal. Non Linéaire (2016), in press, http://dx.doi.org/10.1016/j.anihpc.2016.04.002.

  29. A. Fonda and M. Willem, Subharmonic oscillations of forced pendulum-type equations, J. Differential Equations 81 (1989), 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Fonda and F. Zanolin, Periodic oscillations of forced pendulums with a very small length, Proc. Royal Soc. Edinburgh 127A (1997), 67–76.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Fučík and V. Lovicar, Periodic solutions of the equation x ′ ′(t) + g(x(t)) = p(t), Časopis Pěst. Mat. 100 (1975), 160–175.

    MATH  Google Scholar 

  32. F. Giannoni, Periodic solutions of dynamical systems by a saddle point theorem of Rabinowitz, Nonlinear Anal. 13 (1989), 707–719.

    Article  MathSciNet  MATH  Google Scholar 

  33. Ph. Hartman, On boundary value problems for superlinear second order differential equations, J. Differential Equations 26 (1977), 37–53.

    Article  MathSciNet  MATH  Google Scholar 

  34. A.R. Hausrath and R.F. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré–Birkhoff theorem, J. Math. Anal. Appl. 157 (1991), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Jacobowitz, Periodic solutions of x ′ ′ + f(t, x) = 0 via the Poincaré–Birkhoff theorem, J. Differential Equations 20 (1976), 37–52.

    Article  MathSciNet  MATH  Google Scholar 

  36. A.C. Lazer, Small periodic perturbations of a class of conservative systems, J. Differential Equations 13 (1973), 438–456.

    Article  MathSciNet  MATH  Google Scholar 

  37. A.C. Lazer and P.J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 243–274.

    MathSciNet  MATH  Google Scholar 

  38. Y.M. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. Amer. Math. Soc. 311 (1989), 749–780.

    Article  MathSciNet  MATH  Google Scholar 

  39. W.S. Loud, Periodic Solutions of x ′ ′ + cx + g(x) = ɛ f(t), Mem. Amer. Math. Soc. 31 (1959).

    Google Scholar 

  40. A. Margheri, C. Rebelo and F. Zanolin, Maslov index, Poincaré–Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations 183 (2002), 342–367.

    Article  MathSciNet  MATH  Google Scholar 

  41. G.R. Morris, An infinite class of periodic solutions of x ′ ′ + 2x 3 = p(t), Proc. Cambridge Philos. Soc. 61 (1965), 157–164.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Moser and E. Zehnder, Notes on Dynamical Systems, Amer. Math. Soc., Providence, 2005.

    Book  MATH  Google Scholar 

  43. D. Qian, Infinity of subharmonics for asymmetric Duffing equations with the Lazer–Leach–Dancer condition, J. Differential Equations 171 (2001), 233–250.

    Article  MathSciNet  MATH  Google Scholar 

  44. P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157–184.

    Article  MathSciNet  Google Scholar 

  45. P.H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980), 609–633.

    Article  MathSciNet  MATH  Google Scholar 

  46. P.H. Rabinowitz, Periodic solutions of Hamiltonian systems: a survey, SIAM J. Math. Anal. 13 (1982), 343–352.

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Rebelo, Multiple periodic solutions of second order equations with asymmetric nonlinearities, Discrete Cont. Dynam. Syst. 3 (1997), 25–34.

    Article  MathSciNet  MATH  Google Scholar 

  48. C. Rebelo and F. Zanolin, Multiple periodic solutions for a second order equation with one-sided superlinear growth, Dynam. Contin. Discrete Impuls. Systems 2 (1996), 1–27.

    MathSciNet  MATH  Google Scholar 

  49. M. Willem, Subharmonic oscillations of convex Hamiltonian systems, Nonlinear Anal. 9 (1985), 1303–1311.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Willem, Perturbations of nondegenerate periodic orbits of Hamiltonian systems, in: Periodic Solutions of Hamiltonian Systems and Related Topics, Reidel, Dordrecht, 1987, pp. 261–265.

    Book  Google Scholar 

  51. P. Yan and M. Zhang, Rotation number, periodic Fučík spectrum and multiple periodic solutions, Commun. Contemp. Math. 12 (2010), 437–455.

    Article  MathSciNet  MATH  Google Scholar 

  52. C. Zanini, Rotation numbers, eigenvalues, and the Poincaré–Birkhoff theorem, J. Math. Anal. Appl. 279 (2003), 290–307.

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Zanini and F. Zanolin, A multiplicity result of periodic solutions for parameter dependent asymmetric non-autonomous equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 12 (2005), 343–361.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Fonda, A. (2016). A Myriad of Periodic Solutions. In: Playing Around Resonance. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-47090-0_11

Download citation

Publish with us

Policies and ethics