Skip to main content

Effect of Homogenous Object Stiffness on Tri-Digit Proprieties

  • Chapter
  • First Online:
Haptic Devices for Studies on Human Grasp and Rehabilitation

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

  • 531 Accesses

Abstract

In the previous chapter, I evidenced a relation between finger stiffness and EMG signals of principal finger muscles; in this study, I monitored the same muscle activity throughout the grasp of a instrumented manipulandum with different stiffnesses at contact points. To investigate the effect of the stiffness at contact point on the grasping force distribution, I profitably used the tools and method presented in the previous chapters. In effect, grasping of compliant objects presents additional uncertainties and Winges et al. (Winges et al, J Neurophysiol, 101(5), 2447–2458, 2009 [1]) showed that during a grasp, when one or two contact points are compliant, the activation patterns of finger muscles are different with respect to the case where the contact points are rigid. Besides analyzing the grip forces, to fully understand the control of hand grasping by the CNS, it is important to study how the hand stiffness is regulated during a grasp: stiffening behavior is commonly realized to stabilize movement or to fix posture in isometric tasks (Humphrey and Reed, Adv Neurol, 39, 347–372, 1983, [2]) and recent findings suggest that to some extent, grip stiffness is independent from grip force (Hoppner et al, Plos one 8(12), e80889, 2013, [3]). This study (Godfrey et al, Effect of homogenous object stiffness on tri-digit grasp properties, EMBC, 2015, [4]) aims to investigate the relation between object compliance and grasping stiffness of the hand. To achieve this goal, 11 subjects perform a grasp experiment exploiting a modified version of the manipulandum (see Sect. 2.2) with three different contact modules. Each module is characterized by a certain level of stiffness: rigid, high, medium, or low stiffness. The experiment consisted of four blocks of trials, corresponding to the four different levels of stiffness; in each trial, the subject grasped and lifted the manipulandum 25 times, while the EMG was recorded from the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). These two muscles are the main finger antagonist pair and thus can be used to monitor the EMG activity resulting in the production of grasp force as well as overall hand stiffness; this assumption is in agreement with the capability of the human control system to increase hand stiffness exploiting the co-contraction of antagonist muscles (Smith, Can J Physiol Pharmacol, 59(7), 733–747, 1981, [5]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Winges, S.E. Eonta, J.F. Soechting, M. Flanders, Effects of object compliance on three-digit grasping. J. Neurophysiol. 101(5), 2447–2458 (2009)

    Article  Google Scholar 

  2. D.R. Humphrey, D.J. Reed, Separate cortical systems for control of joint movement and joint stiffness: Reciprocal activation and coactivation of antagonist muscles. Adv. Neurol. 39, 347–372 (1983)

    Google Scholar 

  3. H. Hoppner, J. McIntyre, P. van der Smagt, Task dependency of grip stiffness. a study of human grip force and grip stiffness dependency during two different tasks with same grip forces. Plos one 8(12), e80889 (2013)

    Article  Google Scholar 

  4. S. Godfrey, A. Altobelli, M. Rossi, A. Bicchi, Effect of homogenous object stiffness on tri-digit grasp properties, in EMBC, Accepted (2015)

    Google Scholar 

  5. A.M. Smith, The coactivation of antagonist muscles. Can. J. Physiol. Pharmacol. 59(7), 733–747 (1981)

    Article  Google Scholar 

  6. E.P. Scilingo, M. Bianchi, G. Grioli, A. Bicchi, Rendering softness: Integration of kinaesthetic and cutaneous information in a haptic device. Trans. Haptics 3(2), 109–118 (2010)

    Article  Google Scholar 

  7. A. Perotto, E.F. Delagi, Anatomical guide for the electromyographer: The limbs and trunk (Charles C Thomas Publisher, Springfield, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Altobelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Altobelli, A. (2016). Effect of Homogenous Object Stiffness on Tri-Digit Proprieties. In: Haptic Devices for Studies on Human Grasp and Rehabilitation. Springer Series on Touch and Haptic Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-47087-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47087-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47086-3

  • Online ISBN: 978-3-319-47087-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics