Skip to main content

Magnetic Properties of C80 Endofullerenes

  • Chapter
  • First Online:
Endohedral Fullerenes: Electron Transfer and Spin

Part of the book series: Nanostructure Science and Technology ((NST))

  • 953 Accesses

Abstract

This chapter summarizes the investigations of the endohedral metallofullerenes (EMFs) with a C80 carbon shell in view of their magnetic properties, where the recently discovered single-molecule magnetism in dysprosium based species are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC et al (1985) C60—Buckminsterfullerene. Nature 318(6042):162–163

    Article  Google Scholar 

  2. Nakao K, Kurita N, Fujita M (1994) Ab-initio molecular-orbital calculation for C70 and seven isomers of C80. Phys Rev B 49(16):11415–11420

    Article  Google Scholar 

  3. Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401(6748):55–57

    Article  Google Scholar 

  4. Svitova AL, Ghiassi K, Schlesier C et al (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5:3568

    Article  Google Scholar 

  5. Junghans K, Schlesier C, Kostanyan A et al (2015) Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: selective synthesis of the single-molecule magnet Dy2TiC@C80 and Its congener Dy2TiC2@C80. Angew Chem-Int Edit Engl 54(45):13411–13415

    Article  Google Scholar 

  6. Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2(11):2078–2085

    Article  Google Scholar 

  7. Shu C, Corwin FD, Zhang J et al (2009) Facile preparation of a new gadofullerene-based magnetic resonance imaging contrast agent with high 1H relaxivity. Bioconjugate Chem 20(6):1186–1193

    Article  Google Scholar 

  8. Náfrádi B, Antal Á, Pásztor Á et al (2012) Molecular and spin dynamics in the paramagnetic endohedral fullerene Gd3N@C80. J Phys Chem Lett 3:3291–3296

    Article  Google Scholar 

  9. Svitova AL, Krupskaya Y, Samoylova N et al (2014) Magnetic moments and exchange coupling in nitride clusterfullerenes Gd x Sc3-x N@C80 (x = 1-3). Dalton Trans 43:7387–7390

    Article  Google Scholar 

  10. Tiwari A, Dantelle G, Porfyrakis K et al (2008) Magnetic properties of ErSc2N@C80, Er2ScN@C80 and Er3N@C80 fullerenes. Chem Phys Lett 466:155–158

    Article  Google Scholar 

  11. Zuo T, Olmstead MM, Beavers CM et al (2008) Preparation and structural characterization of the I h and the D 5h isomers of the endohedral fullerenes Tm3N@C80: icosahedral C80 cage encapsulation of a trimetallic nitride magnetic cluster with three uncoupled Tm3+ Ions. Inorg Chem 47(12):5234–5244

    Article  Google Scholar 

  12. Wolf M, Muller KH, Eckert D et al (2005) Magnetic moments in Ho3N@C80 and Tb3N@C80. J Magn Magn Mater 290:290–293

    Article  Google Scholar 

  13. Wolf M, Muller KH, Skourski Y et al (2005) Magnetic moments of the endohedral cluster fullerenes Ho3N@C80 and Tb3N@C80: the role of ligand fields. Angew Chem-Int Edit 44(21):3306–3309

    Article  Google Scholar 

  14. Sessoli R, Gatteschi D, Caneschi A et al (1993) Magnetic bistability in a metal-ion cluster. Nature 365(6442):141–143

    Article  Google Scholar 

  15. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, New York

    Book  Google Scholar 

  16. Ishikawa N, Sugita M, Ishikawa T et al (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695

    Article  Google Scholar 

  17. Westerström R, Dreiser J, Piamonteze C et al (2012) An endohedral single-molecule magnet with long relaxation times: DySc2N@C80. J Am Chem Soc 134(24):9840–9843

    Article  Google Scholar 

  18. Dreiser J, Westerström R, Piamonteze C et al (2014) X-ray induced demagnetization of single-molecule magnets. Appl Phys Lett 105(3):032411

    Article  Google Scholar 

  19. Westerström R, Dreiser J, Piamonteze C et al (2014) Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets. Phys Rev B 89(6):060406

    Article  Google Scholar 

  20. Dreiser J, Westerström R, Zhang Y et al (2014) The metallofullerene field-induced single-ion magnet HoSc2N@C80. Chem-Eur J 20(42):13536–13540

    Article  Google Scholar 

  21. Vieru V, Ungur L, Chibotaru LF (2013) Key role of frustration in suppression of magnetization blocking in single-molecule magnets. J Phys Chem Lett 4(21):3565–3569

    Article  Google Scholar 

  22. Cimpoesu F, Dragoe N, Ramanantoanina H et al (2014) The theoretical account of the ligand field bonding regime and magnetic anisotropy in the DySc2N@C80 single ion magnet endohedral fullerene. Phys Chem Chem Phys 16:11337–11348

    Article  Google Scholar 

  23. Westerström R, Popov A, Greber T (2015) An operational definition of the 100 second blocking temperature TB100 for single molecule magnets. arXiv:150603657

  24. Rinehart JD, Fang M, Evans WJ et al (2011) Strong exchange and magnetic blocking in N2 3−-radical-bridged lanthanide complexes. Nat Chem 3(7):538–542

    Article  Google Scholar 

  25. Rinehart JD, Fang M, Evans WJ et al (2011) A N2 3– radical-bridged terbium complex exhibiting magnetic Hysteresis at 14 K. J Am Chem Soc 133(36):14236–14239

    Article  Google Scholar 

  26. Le Roy JJ, Ungur L, Korobkov I et al (2014) Coupling strategies to enhance single-molecule magnet properties of erbium-cyclooctatetraenyl complexes. J Am Chem Soc 136(22):8003–8010

    Article  Google Scholar 

  27. Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410(6830):789–793

    Article  Google Scholar 

  28. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186

    Article  Google Scholar 

  29. Butcher MJ, Nolan JW, Hunt MRC et al (2003) Adsorption and manipulation of endohedral and higher fullerenes on Si(100)-2x1. Phys Rev B 67(12):125413

    Article  Google Scholar 

  30. Huang T, Zhao J, Feng M et al (2012) A multi-state single-molecule switch actuated by rotation of an encapsulated cluster within a fullerene cage. Chem Phys Lett 552:1–12

    Article  Google Scholar 

  31. Yasutake Y, Shi ZJ, Okazaki T et al (2005) Single molecular orientation switching of an endohedral metallofullerene. Nano Lett 5(6):1057–1060

    Article  Google Scholar 

  32. Treier M, Ruffieux P, Fasel R et al (2009) Looking inside an endohedral fullerene: inter- and intramolecular ordering of Dy3N@C80 (I h ) on Cu(111). Phys Rev B 80:081403

    Article  Google Scholar 

  33. Westerström R, Uldry A-C, Stania R et al (2015) Surface aligned magnetic moments and hysteresis of an endohedral single-molecule magnet on a metal. Phys Rev Lett 114:087201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Greber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Westerström, R., Greber, T. (2017). Magnetic Properties of C80 Endofullerenes. In: Popov, A. (eds) Endohedral Fullerenes: Electron Transfer and Spin. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47049-8_11

Download citation

Publish with us

Policies and ethics