Skip to main content

Influence of Heterogeneity on Heat Transport Simulations in Shallow Geothermal Systems

  • Chapter
  • First Online:
Geostatistics Valencia 2016

Abstract

The influence of parameter heterogeneity, such as permeability, porosity, and thermal conductivity, over results of heat transport simulation is studied. A set of synthetic aquifer simulations considering different degrees of heterogeneity in the hydraulic conductivity, porosity, and thermal conductivity fields were created by sequential Gaussian simulation techniques. Heterogeneity of the hydraulic conductivity showed to have a significant influence on the evaluation of a cold plume in the porous media. Higher variances in the hydraulic conductivity distributions cause an important rise in the variability of the simulated temperature fields and a considerable increase of uncertainty in the simulated heat distribution in the aquifer system. Results show that considering heterogeneity on the permeability fields induces more impact on the model results than considering heterogeneity of both porosity and thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Bridger D, Allen D (2010) Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES). Can Geotechnik J 47:96–115

    Article  Google Scholar 

  • Busch K-F, Luckner L (1993) Geohydraulik Band 3 von Lehrbuch der Hydrogeologie. Gebr. Borntraeger, Berlin

    Google Scholar 

  • Carman P (1937) Fluid flow through a granular bed. Trans Inst Chem Eng 15:150–167

    Google Scholar 

  • Carrier DW (2003) Good by Hazen; Hello Kozeny-Carman. J Geotech Geoenviron 129:1054–1056

    Article  Google Scholar 

  • Conde Lázaro E, Ramos Millán A (2009) Guía Técnica de Bombas de Calor Geotérmicas. Gráficas Arias Montano, S.A, Madrid

    Google Scholar 

  • Ferguson G (2007) Heterogeneity and thermal modeling of ground water. Ground Water 45:485–490

    Article  Google Scholar 

  • Kozeny J (1927) Über kappilare Leitung des Wassers im Boden. Wien: Hölder-Pichler-Tempsky, A.-G. [Abt.:] Akad. d. Wiss

    Google Scholar 

  • Kupfersberger H (2009) Heat transfer modelling of the Leibnitzer Feld aquifer, Austria. Environ Earth Sci 59:561–571

    Article  Google Scholar 

  • Llopis Trillo G, López Gimeno C (2009) Guía Técnica de Sondeos Geotérmicos Superficiales. Gráficas Arias Montano S.A, Madrid

    Google Scholar 

  • Mendez Hecht J (2008) Implementation and verification of the USGS solute transport code MT3DMS for groundwater heat transport modelling. Eberhard Karls Universität Tübingen, Tübingen

    Google Scholar 

  • Mohnke O (2008) Pore size distributions and conductivities of rocks derived from magnetic resonance sounding relaxation data using multi-exponential delay time inversion. J Appl Geophys 66:73–81

    Article  Google Scholar 

  • Molina Giraldo NA (2008) Verification of MT3DMS as heat transport code using analytical solutions. Eberhard Karls Universität Tübingen, Tübingen

    Google Scholar 

  • Molson JW (1992) Thermal energy storage in an unconfined aquifer: 1. Field injection experiment. Water Resour Res 28–10:2845–2856

    Google Scholar 

  • Rasouli P (2008) Numerical verification of shallow geothermal models using FEFLOW. Eberhard Karls Universität Tübingen, Tübingen

    Google Scholar 

  • Regalado C, Carpena R (2004) Estimating the saturated hydraulic conductivity in a spatially variable soil with different permeameters: a stochastic Kozeny-Carman relation. Soil Tillage Res 77:189–202

    Article  Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS. A user’s guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sanner B (2001) Shallow geothermal energy. Justus-Liebig University, Giessen

    Google Scholar 

  • Schneider JH (2003) New least squares model used for development of permeability-porosity correlation. Poteet Texas

    Google Scholar 

  • Shuang J (2009) Geostatistical modeling of shallow open geothermal systems. Eberhard Karls Universität Tübingen, Tübingen

    Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS documentation and user guide. U.S. Army Corps of Engineers, Washington

    Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Spanish Ministerio de Economía y Competitividad through research project ¿QUIÉN HA SIDO? – Ref: CGL2014-59841-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rodrigo-Ilarri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodrigo-Ilarri, J., Reisinger, M., Gómez-Hernández, J.J. (2017). Influence of Heterogeneity on Heat Transport Simulations in Shallow Geothermal Systems. In: Gómez-Hernández, J., Rodrigo-Ilarri, J., Rodrigo-Clavero, M., Cassiraga, E., Vargas-Guzmán, J. (eds) Geostatistics Valencia 2016. Quantitative Geology and Geostatistics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-46819-8_59

Download citation

Publish with us

Policies and ethics