Skip to main content

Implementation of a Modular Growing When Required Neural Gas Architecture for Recognition of Falls

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9947))

Included in the following conference series:

  • 3727 Accesses

Abstract

In this paper we aim for the replication of a state of the art architecture for recognition of human actions using skeleton poses obtained from a depth sensor. We review the usefulness of accurate human action recognition in the field of robotic elderly care, focusing on fall detection. We attempt fall recognition using a chained Growing When Required neural gas classifier that is fed only skeleton joints data. We test this architecture against Recurrent SOMs (RSOMs) to classify the TST Fall detection database ver. 2, a specialised dataset for fall sequences. We also introduce a simplified mathematical model of falls for easier and faster bench-testing of classification algorithms for fall detection.

The outcome of classifying falls from our mathematical model was successful with an accuracy of \( 97.12 \pm 1.65\,\%\) and from the TST Fall detection database ver. 2 with an accuracy of \(90.2 \pm 2.68\,\%\) when a filter was added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010). doi:10.1214/09-SS054

    Article  MathSciNet  MATH  Google Scholar 

  2. Burman, P.: A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 76(3), 503–514 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, M., Estéve, D., Escriba, C., Campo, E.: A review of smart homes-present state and future challenges. Comput. Methods Prog. Biomed. 91, 55–81 (2008). doi:10.1016/j.cmpb.2008.02.001

    Article  Google Scholar 

  4. Fernandez-Granero, M.A., Sanchez-Morillo, D., Leon-Jimenez, A.: Computerised analysis of telemonitored respiratory sounds for predicting acute exacerbations of copd. Sensors (Basel) 15, 26978–26996 (2015). doi:10.3390/s151026978

    Article  Google Scholar 

  5. Flodgren, G., Rachas, A., Farmer, A.J., Inzitari, M., Shepperd, S.: Interactive telemedicine: effects on professional practice and health care outcomes. In: Cochrane Database of Systematic Reviews. Wiley (2015)

    Google Scholar 

  6. Furao, S., Hasegawa, O.: An incremental network for on-line unsupervised classification and topology learning. Neural Netw. 19, 90–106 (2006). doi:10.1016/j.neunet.2005.04.006

    Article  MATH  Google Scholar 

  7. Gasparrini, S., Cippitelli, E., Gambi, E., Spinsante, S., Wåhslén, J., Orhan, I., Lindh, T.: Proposal and experimental evaluation of fall detection solution basedon wearable and depth data fusion. In: Loshkovska, S., Koceski, S. (eds.) ICTInnovations 2015, Advances in Intelligent Systems and Computing, pp. 99–108. Springer International Publishing, Switzerland (2016)

    Google Scholar 

  8. Ho, T.-W., Huang, C.-T., Chiu, H.-C., Ruan, S.-Y., Tsai, Y.-J., Yu, C.-J., Lai, F.: Effectiveness of telemonitoring in patients with chronic obstructive pulmonary disease in Taiwan-a randomized controlled Trial. Sci. Rep. 6 (2016). doi:10.1038/srep23797

  9. Jauch, E.C., Saver, J.L., Demaerschalk, B.M., Khatri, P., McMullan Jr., P.W., Qureshi, A.I., Rosenfield, K., Scott, P.A., Summers, D.R., Wang, D.Z.: AHA/ASA Guideline. Stroke (2013)

    Google Scholar 

  10. JointType enumeration [WWW Document], n.d. https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx. Accessed 14 May 16

  11. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE Trans. Pattern Anal. Mach. Intell. 38, 14–29 (2016)

    Article  Google Scholar 

  12. Martinetz, T.M., Schulten, K.J.: A “Neural Gas” networklearns topologies. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Proceedings of the International Conference on Artificial Neural Networks 1991, Espoo, Finland, pp. 397–402, Amsterdam, North-Holland, New York (1991)

    Google Scholar 

  13. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when required. Neural Netw. 15, 1041–1058 (2002)

    Article  Google Scholar 

  14. Parisi, G., Wermter, S., others.: Hierarchical SOM-based detection of novel behavior for 3D human tracking. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2011)

    Google Scholar 

  15. Parisi, G.I., Weber, C., Wermter, S.: Self-organizing neural integration of pose-motion features for human action recognition. Front. Neurorobotics 9, (2015). doi:10.3389/fnbot.2015.00003

  16. Peacock, T., Hadjiconstantinou, N.: Course materials for 2.003J/1.053J dynamics and control I, Spring (2007). MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Accessed 13 May 2016

  17. Prime sensor\(^{\text{TM}}\) NITE 1.3 framework programmer’s guide - NITE.pdf. http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf. Accessed 14 May 2016

  18. Rabbitt, S.M., Kazdin, A.E., Scassellati, B.: Applications and recommendations for expanded use. Clin. Psychol. Rev. 35, 35–46. doi:10.1016/j.cpr.2014.07.001

    Google Scholar 

  19. Valenzuela, T.D., Roe, D.J., Cretin, S., Spaite, D.W., Larsen, M.P.: Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation 96, 3308–3313 (1997). doi:10.1161/01.CIR.96.10.3308

    Article  Google Scholar 

  20. Wilkinson, T.M.A., Donaldson, G.C., Hurst, J.R., Seemungal, T.A.R., Wedzicha, J.A.: Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 169, 1298–1303 (2004). doi:10.1164/rccm.200310-1443OC

    Article  Google Scholar 

  21. Yongli, G., Yin, O.S., Han, P.Y.: State of the art: a study on fall detection. World Acad. Sci. Eng. Technol. 62, 294–298 (2012)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by CNPq Brazil (scholarship 232590/2014-1) and by SGS grant No. 10/279/OHK3/3T/13, sponsored by the CTU in Prague, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico B. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Klein, F.B., Štěpánová, K., Cangelosi, A. (2016). Implementation of a Modular Growing When Required Neural Gas Architecture for Recognition of Falls. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9947. Springer, Cham. https://doi.org/10.1007/978-3-319-46687-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46687-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46686-6

  • Online ISBN: 978-3-319-46687-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics