Skip to main content

Topological Order Discovery via Deep Knowledge Tracing

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9950))

Included in the following conference series:

Abstract

The goal of discovering topological order of skills is to generate a sequence of skills satisfying all prerequisite requirements. Very few previous studies have examined this task from knowledge tracing perspective. In this paper, we introduce a new task of discovering topological order of skills using students’ exercise performance and explore the utility of Deep Knowledge Tracing (DKT) to solve this task. The learned topological results can be used to improve students’ learning efficiency by providing students with personalized learning paths and predicting students’ future exercise performance. Experimental results demonstrate that our method is effective to generate reasonable topological order of skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ASSISTment dataset: https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.

References

  1. Piech, C., Spencer, J., Huang, J., Ganguli, S., Sahami, M., Guibas,L., Sohl-Dickstein, J.: Deep knowledge tracing. In: NIPS (2015)

    Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  3. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Interact. 4(4), 253–278 (1994)

    Article  Google Scholar 

  4. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 171–180. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Pardos, Z.A., Heffernan, N.T.: KT-IDEM: introducing item difficulty to the knowledge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 17351780 (1997)

    Article  Google Scholar 

  9. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85117 (2015)

    Article  Google Scholar 

  10. Khajah, M., Lindsey, R.V., Mozer, M.C.: How deep is knowledge tracing? arXiv preprint arXiv:1604.02416 (2016)

  11. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: International Joint Conference on Neural Networks, pp. 593–605. IEEE (1989)

    Google Scholar 

  12. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The work described in this paper was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (No. CUHK 14208815 of the General Research Fund), and 2015 Microsoft Research Asia Collaborative Research Program (Project No. FY16-RES-THEME-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiani Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zhang, J., King, I. (2016). Topological Order Discovery via Deep Knowledge Tracing. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46681-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46680-4

  • Online ISBN: 978-3-319-46681-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics