We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Analytical Approximations for Optimal Trajectory Tracking | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Analytical Approximations for Optimal Trajectory Tracking

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Optimal Trajectory Tracking of Nonlinear Dynamical Systems

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This chapter drops the assumption of exactly realizable trajectories and allows for arbitrary desired trajectories \(\varvec{x}_{d}\left( t\right) \). The regularization parameter of optimal control is assumed to be small and used for a perturbation expansion. Rearranging the necessary optimality conditions leads to a reinterpretation of unregularized optimal control problems as singularly perturbed differential equations. For systems satisfying a linearizing assumption, the leading order equations become linear. The linearity allows the derivation of closed form expressions for optimal trajectory tracking in a general class of nonlinear systems affine in control. The perturbative approach yields exact results for vanishing regularization parameter. However, this exact result comes at a price in form of a diverging control signal and a discontinuous state trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. Bellman, Dynamic Programming, Reprint edition. (Dover, New York, 2003). ISBN 9780486428093

    Google Scholar 

  • C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory (Springer, Berlin, 2010). ISBN 9781441931870

    Google Scholar 

  • J.A.E. Bryson, Y.-C. Ho. Applied Optimal Control: Optimization, Estimation and Control, Revised edition. (CRC Press, Boca Raton, 1975). ISBN 9780891162285

    Google Scholar 

  • B. Houska, H. Ferreau, M. Diehl, ACADO toolkit—an open source framework for automatic control and dynamic optimization. Optim. Control Appl. Methods 32(3), 298–312 (2011a). doi:10.1002/oca.939

    Article  MathSciNet  MATH  Google Scholar 

  • B. Houska, H. Ferreau, M. Diehl, An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10), 2279–2285 (2011b). doi:10.1016/j.automatica.2011.08.020

  • R. Johnson, Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering, 1st edn. (Springer, Berlin, 2004). ISBN 9780387232003

    Google Scholar 

  • W. Just, A. Pelster, M. Schanz, E. Schöll, Delayed complex systems: an overview. Philos. T. R. Soc. A 368(1911), 303–304 (2010). doi:10.1098/rsta.2009.0243

    Article  ADS  MATH  Google Scholar 

  • H.J. Kappen, Linear theory for control of nonlinear stochastic systems. Phys. Rev. Lett. 95, 200201 (2005). doi:10.1103/PhysRevLett. 95.200201

    Article  ADS  MathSciNet  Google Scholar 

  • E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990). doi:10.1103/PhysRevLett. 64.1196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992). doi:10.1016/0375-9601(92)90745-8

    Article  ADS  Google Scholar 

  • K. Pyragas, Delayed feedback control of chaos. Philos. T. R. Soc. A 364(1846), 2309–2334 (2006). doi:10.1098/rsta.2006.1827

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • L. Schimansky-Geier, B. Fiedler, J. Kurths, E. Schöll, (eds.), Analysis and Control of Complex Nonlinear Processes in Physics, Chemistry and Biology. Number 5 in World Scientific Lecture Notes in Complex Systems. (World Scientific, Singapore, 2007). ISBN 9789812705839

    Google Scholar 

  • E. Schöll, H.G. Schuster (eds.), Handbook of Chaos Control, 2nd edn. (Wiley, New York, 2007). ISBN 9783527406050

    Google Scholar 

  • Wolfram Research, Inc., Mathematica 10.0 (2014), http://www.wolfram.com/mathematica

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Löber .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Löber, J. (2017). Analytical Approximations for Optimal Trajectory Tracking. In: Optimal Trajectory Tracking of Nonlinear Dynamical Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46574-6_4

Download citation

Publish with us

Policies and ethics