Skip to main content

Abstract

Surgery for resection of cerebral tumors or epileptic foci carries risks of damage to cortical areas involved in sensory, motor, language, and memory function. Even with modern anatomic and functional imaging techniques, preoperative studies are not sufficient if the surgeon wishes to obtain maximal resection of abnormal tissue while preserving neural function. Thus, intraoperative mapping techniques have been utilized for nearly 80 years to provide detailed delineation of functional areas during surgery. This chapter reviews the current state-of-the-art techniques and also briefly considers new techniques now being developed. While language and memory mapping during awake craniotomies will be discussed, the primary emphasis will be on techniques for mapping sensory and motor cortical regions during craniotomies performed under general anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Asterisks indicate key references.

References

Asterisks indicate key references.

  1. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.

    Article  Google Scholar 

  2. Penfield W, Rasmussen T. The cerebral cortex of man. New York: Macmillan; 1950. p. 248.

    Google Scholar 

  3. Ojemann GA, Whitaker HA. Language localization and variability. Brain Lang. 1978;6:239–60.

    Article  CAS  PubMed  Google Scholar 

  4. Capelle L, Fontaine D, Mandonnet E, Taillandier L, Golmard JL, Baucher L, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases. J Neurosurg. 2013;118:1157–68.

    Article  PubMed  Google Scholar 

  5. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment of biases. Neurosurgery. 2008;62:564–76.

    Article  PubMed  Google Scholar 

  6. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358:18–27.

    Article  CAS  PubMed  Google Scholar 

  7. Hamberger MJ, Seidel WT, Goodman RR, McKhann GM. Does cortical mapping protect naming if surgery includes hippocampal resection? Ann Neurol. 2010;67:345–52.

    PubMed  PubMed Central  Google Scholar 

  8. Hervey-Jumper SL, Li J, Lau D, Molinaro AM, Perry DW, Meng L, Berger MS. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg. 2015;123:1–15.

    Article  Google Scholar 

  9. Brown T, Shah AH, Bregy A, Shah NH, Thambuswamy M, Barbarite E, et al. Awake craniotomy for brain tumor resection: the rule rather than the exception? J Neurosurg Anesthesiol. 2013;25:240–7.

    Article  PubMed  Google Scholar 

  10. Desmedt JE, Nguyen TH, Bourguet M. Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses. Electroencephalogr Clin Neurophysiol. 1987;68:1–19.

    Article  CAS  PubMed  Google Scholar 

  11. Desmedt JE, Cheron G. Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components. Electroencephalogr Clin Neurophysiol. 1981;52:553–70.

    Article  CAS  PubMed  Google Scholar 

  12. Nuwer MR, Banoczi WR, Cloughesy TF, Hoch DB, Peacock W, Levesque MF, et al. Topographic mapping of somatosensory evoked potentials helps identify motor cortex more quickly in the operating room. Brain Topogr. 1992;5:53–8.

    Article  CAS  PubMed  Google Scholar 

  13. Yingling CD, Ojemann S, Dodson B, Harrington MJ, Berger MS. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. J Neurosurg. 1999;91:922–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sartorius CJ, Berger MS. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex: technical note. J Neurosurg. 1998;88:349–51.

    Article  CAS  PubMed  Google Scholar 

  15. Li DL, Journee HL, van Hulzen A, Rath WT, Sclabassi RJ, Sun M. Computer simulation of corticospinal activity during transcranial electrical stimulation in neurosurgery. Stud Health Technol Inform. 2007;125:292–7.

    PubMed  Google Scholar 

  16. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19:416–29.

    Article  PubMed  Google Scholar 

  17. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32:219–26.

    Article  CAS  PubMed  Google Scholar 

  18. Cedzich C, Taniguchi M, Schafer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38:962–70.

    Article  CAS  PubMed  Google Scholar 

  19. Kombos T, Suess O, Funk T, Kern BC, Brock M. Intra-operative mapping of the motor cortex during surgery in and around the motor cortex. Acta Neurochir (Wien). 2000;142:263–8.

    Article  CAS  Google Scholar 

  20. Kamada K, Todo T, Ota T, Ino K, Masutani Y, Aoki S, et al. The motor-evoked potential threshold evaluated by tractography and electrical stimulation. J Neurosurg. 2009;111:785–95.

    Article  PubMed  Google Scholar 

  21. Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. J Neurosurg. 2011;114:738–46.

    Article  PubMed  Google Scholar 

  22. Prabhu SS, Gasco J, Tummala S, Weinberg JS, Rao G. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. J Neurosurg. 2011;114:719–26.

    Article  PubMed  Google Scholar 

  23. *Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic mapping of the cortico-spinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg. 2014;120:1015–23.

    Google Scholar 

  24. *Szelényi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus. 2010;28:1–8

    Google Scholar 

  25. Shiban E, Krieg SM, Haller B, Buchmann N, Obermueller T, Boeckh-Behrens T, et al. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J Neurosurg. 2015;15:1–6.

    Google Scholar 

  26. Shiban E, Krieg SM, Obermueller T, Wostrack M, Mayer B, Ringel F. Continuous subcortical motor evoked potential stimulation using the tip of the ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg. 2015;123:301–6.

    Article  PubMed  Google Scholar 

  27. Yanni DS, Ulkatan S, Deletis V, Barrenechea IJ, Sen C, Perin NI. Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. J Neurosurg Spine. 2010;12:623–8.

    Article  PubMed  Google Scholar 

  28. Quiñones-Hinojosa A, Gulati M, Lyon R, Gupta N, Yingling C. Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery. 2002;51:1199–207.

    Article  PubMed  Google Scholar 

  29. Nair D, Kumaraswamy VM, Braver D, Kilbride RD, Borges LF, et al. Dorsal column mapping via phase reversal method: the refined technique and clinical applications. Neurosurgery. 2014;74:437–46.

    Article  PubMed  Google Scholar 

  30. *Gandhi R, Curtis CM, Cohen-Gadol AA. High-resolution direct microstimulation mapping of spinal cord pathways during resection of an intramedullary tumor. J Neurosurg Spine. 2015;22:205–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Yingling Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yingling, C.D., Nguyen, T.N. (2017). Brain and Spinal Cord Mapping. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics