Skip to main content

Doped Two-Dimensional Silicon Nanostructures as a Platform for Next-Generation Sensors

  • Conference paper
  • First Online:
Recent Global Research and Education: Technological Challenges

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 519))

  • 1038 Accesses

Abstract

In this work, we provide results of studies devoted to nano-sensors based on doped two-dimensional silicon nanotransistors and p-n nanojunctions. Based on obtained results and analysis, we demonstrate that, under certain conditions, both these structures can be ultra-sensitive: nanotransistors can resolve single photons; whereas p-n nanojunctions are able to detect single charge. Detection mechanism, involving appearance of individual dopants and aspects related to the reduced dimensionality, has been proposed. Elaborated model can be successfully applied to nanotransistor- and nanojunction-based sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nawrocki, W.: The quantum SI—Towards the new system of units. Metrol. Meas. Syst. 2, 139–150 (2010)

    Google Scholar 

  2. Eight Nanoforum Report. www.nanoforum.org

  3. Khanna, V.K.: Nanosensors: Physical, Chemical, and Biological. CRC Press, Boca Raton (2011)

    Google Scholar 

  4. Diarra, M., Niquet, Y.-M., Delerue, C., Allan, G.: Ionization energy of donor and acceptor impurities in semiconductor nanowires: importance of dielectric confinement. Phys. Rev. B 75, 045301 (2007)

    Article  Google Scholar 

  5. Mol, J.A., Salfi, J., Miwa, J.A., Simmons, M.Y., Rogge, S.: Interplay between quantum confinement and dielectric mismatch for ultra-shallow dopants. Phys. Rev. B 87, 245417 (2013)

    Article  Google Scholar 

  6. Niklas, E., Juhasz, R., Sychugov, I., Engfeldt, T., Karlström, A.E., Linnros, J.: Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett. 7, 2608–2612 (2007)

    Google Scholar 

  7. Koenraad, P.M., Flatté, M.E.: Single dopants in semiconductors. Nat. Mater. 10, 91–100 (2011)

    Article  Google Scholar 

  8. Karamitaheri, H., Neophytou, N., Kosina, H.: Ballistic phonon transport in ultra-thin silicon layers: effects of confinement and orientation. J. Appl. Phys. 113, 204305 (2013)

    Article  Google Scholar 

  9. Markussen, T., Rurali, R., Jauho, A.-P., Brandbyge, M.: Transport in silicon nanowires: role of radial dopant profile. J. Comput. Electron. 7, 324–327 (2008)

    Article  Google Scholar 

  10. Chow, T.P., Tyagi, R.: Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans. Electron Dev. 41, 1481–1483 (1994)

    Article  Google Scholar 

  11. Pierre, M., Wacquez, R., Jehl, X., Sanquer, M., Vinet, M., Cueto, O.: Single-donor ionization energies in a nanoscale CMOS channel. Nat. Nanotechnol. 5, 133 (2009)

    Article  Google Scholar 

  12. Achoyan, ASh, Yesayan, A.É., Kazaryan, É.M., Petrosyan, S.G.: Two-dimensional p-n junction under equilibrium conditions. Semiconductors 36, 903–907 (2002)

    Article  Google Scholar 

  13. Tabe, M., Moraru, D., Ligowski, M., Anwar, M., Jablonski, R., Ono, Y., Mizuno, T.: Single-electron transport through single dopants in a dopant-rich environment. Phys. Rev. Lett. 105, 016803 (2010)

    Article  Google Scholar 

  14. Simoen, E., Dierickx, B., Claeys, C.L., Declerck, G.J.: Explaining the amplitude of RTS noise in submicrometer MOSFETs. IEEE Trans. Electron Devices 39, 422 (1992)

    Article  Google Scholar 

  15. Udhiarto, A., Moraru, D., Mizuno, T., Tabe, M.: Trapping of a photoexcited electron by a donor in nanometer-scale phosphorus-doped silicon-on-insulator field-effect transistors. Appl. Phys. Lett. 99, 113108 (2011)

    Article  Google Scholar 

  16. Nonnenmacher, M., O’Boyle, M.P., Wickramasinghe, H.K.: Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991)

    Article  Google Scholar 

  17. Nowak, R., Anwar, M., Moraru, D., Mizuno, T., Jablonski, R., Tabe, M.: Electron filling in phosphorus donors embedded in silicon nanostructures observed by KFM technique. J. Appl. Res. Phys. 3, 021202 (2012)

    Google Scholar 

  18. Udhiarto, A., Moraru, D., Purwiyanti, S., Mizuno, T., Tabe, M.: Photon-induced random telegraph signal due to potential fluctuation of a single donor-acceptor pair in nanoscale Si p–n junctions. Appl. Phys. Express 5, 112201 (2012)

    Article  Google Scholar 

  19. Nowak, R., Jablonski, R.: Nanoscale lateral p-i-n junction as a dopant-based charge sensor. Submitted (2016)

    Google Scholar 

  20. Nowak, R., Moraru, D., Mizuno, T., Jablonski, R., Tabe, M.: Effects of deep-level dopants on the electronic potential of thin Si pn junctions observed by Kelvin probe force microscope. Appl. Phys. Lett. 102, 083109 (2013)

    Article  Google Scholar 

  21. Foty, D.: Impurity ionization in MOSFETs at very low temperature. Cryogenics 30, 1056 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nowak, R., Tyszka, K., Jablonski, R. (2017). Doped Two-Dimensional Silicon Nanostructures as a Platform for Next-Generation Sensors. In: Jabłoński, R., Szewczyk, R. (eds) Recent Global Research and Education: Technological Challenges. Advances in Intelligent Systems and Computing, vol 519. Springer, Cham. https://doi.org/10.1007/978-3-319-46490-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46490-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46489-3

  • Online ISBN: 978-3-319-46490-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics