Skip to main content

IL-2 Stimulation of Regulatory T Cells: A Stochastic and Algorithmic Approach

  • Chapter
  • First Online:
Modeling Cellular Systems

Abstract

Regulatory T cells express IL-2 receptor (IL-2R) complexes on their surface, but do not produce IL-2 molecules. Survival of a population of regulatory T cells depends on the production of IL-2 by other cells, such as effector T cells. We formulate a stochastic version of the model of Busse (Dynamics of the IL-2 cytokine network and T-cell proliferation, Logos, Berlin, 2010, [1]), for the synthesis of IL-2R by a regulatory T cell in constitutive (ligand-independent) and in ligand-induced conditions, with the assumption that synthesis is a function of the number of IL-2/IL-2R bound complexes present on the cell surface. Exact analysis of the stochastic Markov process, by considering its master equation, is usually not possible. Here, we develop an algorithmic approach, which leads to the analysis of suitable random variables. In particular, we focus on the time to reach a threshold number of IL-2/IL-2R bound complexes on the cell surface, and the number of receptors synthesised in this time. These descriptors provide a way to quantify the rates at which IL-2/IL-2R bound complexes and IL-2R free receptors are formed in the cell, and how these rates relate to each other. By following first-step arguments, the different order moments of these random variables are obtained. We illustrate our approach with numerical realisations. The contributions of the constitutive and the ligand-induced synthesis pathways are quantified under different signalling hypotheses.

L. de la Higuera and M. López-García have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Other hypotheses for x are discussed and considered in Sect. 4. In particular, \(x=C(t)\) in the original model of Ref. [1], while alternative possibilities \(x=E(t)\) and \(x=C(t)+E(t)\) are introduced and analysed here in Sect. 4.

References

  1. D Busse. Dynamics of the IL-2 cytokine network and T-cell proliferation. Logos Verlag Berlin GmbH, 2010.

    Google Scholar 

  2. L Klein, B Kyewski, PM Allen, and KA Hogquist. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nature Reviews Immunology, 14(6):377–391, 2014.

    Google Scholar 

  3. E Palmer. Negative selection? clearing out the bad apples from the T-cell repertoire. Nature Reviews Immunology, 3(5):383–391, 2003.

    Google Scholar 

  4. K Shortman, D Vremec, and M Egerton. The kinetics of T cell antigen receptor expression by subgroups of CD4+ 8+ thymocytes: delineation of CD4+ 8+ 3 (2+) thymocytes as post-selection intermediates leading to mature T cells. The Journal of Experimental Medicine, 173(2):323–332, 1991.

    Google Scholar 

  5. Y Xing and KA Hogquist. T-cell tolerance: central and peripheral. Cold Spring Harbor Perspectives in Biology, 4(6):a006957, 2012.

    Google Scholar 

  6. EM Janssen, EE Lemmens, T Wolfe, U Christen, MG von Herrath, and SP Schoenberger. CD4+; T cells are required for secondary expansion and memory in CD8+; T lymphocytes. Nature, 421(6925):852–856, 2003.

    Google Scholar 

  7. O Boyman and J Sprent. The role of interleukin-2 during homeostasis and activation of the immune system. Nature Reviews Immunology, 12(3):180–190, 2012.

    Google Scholar 

  8. LM Sompayrac. How the immune system works. John Wiley & Sons, 2011.

    Google Scholar 

  9. TR Malek, BO Porter, EK Codias, P Scibelli, and A Yu. Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. The Journal of Immunology, 164(6):2905–2914, 2000.

    Google Scholar 

  10. TR Malek, A Yu, V Vincek, P Scibelli, and L Kong. CD4 regulatory T cells prevent lethal autoimmunity in IL-2R\(\beta \)-deficient mice: implications for the nonredundant function of IL-2. Immunity, 17(2):167–178, 2002.

    Google Scholar 

  11. ARM Almeida, N Legrand, M Papiernik, and AA Freitas. Homeostasis of peripheral CD4+ T cells: IL-2R\(\alpha \) and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. The Journal of Immunology, 169(9):4850–4860, 2002.

    Google Scholar 

  12. ARM Almeida, B Zaragoza, and AA Freitas. Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+ CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. The Journal of Immunology, 177(1):192–200, 2006.

    Google Scholar 

  13. TR Malek, A Yu, L Zhu, T Matsutani, D Adeegbe, and AL Bayer. IL-2 family of cytokines in T regulatory cell development and homeostasis. Journal of Clinical Immunology, 28(6):635–639, 2008.

    Google Scholar 

  14. TR Malek and I Castro. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity, 33(2):153–165, 2010.

    Google Scholar 

  15. SK Dower, SR Kronheim, CJ March, PJ Conlon, TP Hopp, S Gillis, and DL Urdal. Detection and characterization of high affinity plasma membrane receptors for human interleukin 1. The Journal of Experimental Medicine, 162(2):501–515, 1985.

    Google Scholar 

  16. VG Kulkarni. Modeling and analysis of stochastic systems. CRC Press, 2009.

    Google Scholar 

  17. DT Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

    Google Scholar 

  18. NG Van Kampen. Stochastic processes in physics and chemistry, volume 1. Elsevier, 1992.

    Google Scholar 

  19. MF Neuts. Matrix-analytic methods in queuing theory. European Journal of Operational Research, 15(1):2–12, 1984.

    Google Scholar 

  20. A Gómez-Corral and M López-García. Extinction times and size of the surviving species in a two-species competition process. Journal of Mathematical Biology, 64(1–2):255–289, 2012.

    Google Scholar 

  21. A Economou, A Gómez-Corral, and M López-García. A stochastic SIS epidemic model with heterogeneous contacts. Physica A: Statistical Mechanics and its Applications, 421:78–97, 2015.

    Google Scholar 

  22. M López-García. Stochastic descriptors in an SIR epidemic model for heterogeneous individuals in small networks. Mathematical Biosciences, 271:42–61, 2015.

    Google Scholar 

  23. JR Artalejo, A Gómez-Corral, M López-García, and C Molina-París. Stochastic descriptors to study the fate and potential of naive T cell clonotypes in the periphery. Journal of Mathematical Biology. doi:10.1007/s00285-016-1020-6, 2016.

  24. KG Gurevich, PS Agutter, and DN Wheatley. Stochastic description of the ligand-receptor interaction of biologically active substances at extremely low doses. Cellular Signalling, 15(4):447–453, 2003.

    Google Scholar 

  25. QM He. Fundamentals of matrix-analytic methods. Springer, 2014.

    Google Scholar 

  26. C Starbuck and DA Lauffenburger. Mathematical model for the effects of epidermal growth factor receptor trafficking dynamics on fibroblast proliferation responses. Biotechnology Progress, 8(2):132–143, 1992.

    Google Scholar 

  27. B Goldstein, JR Faeder, and WS Hlavacek. Mathematical and computational models of immune-receptor signalling. Nature Reviews Immunology, 4(6):445–456, 2004.

    Google Scholar 

  28. PW Zandstra, DA Lauffenburger, and CJ Eaves. A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis. Blood, 96(4):1215–1222, 2000.

    Google Scholar 

  29. J Currie, M Castro, G Lythe, E Palmer, and C Molina-París. A stochastic T cell response criterion. Journal of The Royal Society Interface, 9(76):2856–2870, 2012.

    Google Scholar 

  30. J Abate and W Whitt. Numerical inversion of Laplace transforms of probability distributions. ORSA Journal on Computing, 7(1):36–43, 1995.

    Google Scholar 

  31. D Insua, F Ruggeri, and M Wiper. Bayesian analysis of stochastic process models, volume 978. John Wiley & Sons, 2012.

    Google Scholar 

  32. PG Ciarlet, B Miara, and JM Thomas. Introduction to numerical linear algebra and optimisation. Cambridge University Press, 1989.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the European Commission through the Marie-Curie Action “Quantitative T cell Immunology” QuanTI Initial Training Network, with grant number FP7-PEOPLE-2012-ITN 317040-QuanTI (Luis de la Higuera, Grant Lythe and Carmen Molina-París). M. López-García is supported by The Leverhulme Trust RPG-2012-772. The authors acknowledge the support of the University of Leeds for the permission to use the High Performance Computing facilities ARC1 and ARC2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis de la Higuera or Martín López-García .

Editor information

Editors and Affiliations

Appendix

Appendix

In order to efficiently analyse the first descriptor studied in Sect. 3.1, we express the system of equations given by Eq. (2), in matrix form as

$$\begin{aligned} {\varvec{\varphi }}(z) \ = \ \mathbf{A}(z) \; {\varvec{\varphi }}(z) + \mathbf{b}(z)\; , \end{aligned}$$
(7)

where the constant B has been omitted to simplify the notation. The vector of unknowns, \({\varvec{\varphi }}(z)\), is structured, due to the organisation of \({\mathscr {S}}\), in levels and sub-levels, by blocks as follows

$$\begin{aligned} {\varvec{\varphi }}(z)= & {} \left( \begin{array}{c} {\varvec{\varphi }}_0(z)\\ {\varvec{\varphi }}_1(z)\\ \vdots \\ {\varvec{\varphi }}_{B-1}(z) \end{array}\right) ,\quad {\varvec{\varphi }}_{k}(z) \ = \ \left( \begin{array}{c} {\varvec{\varphi }}^k_0(z)\\ {\varvec{\varphi }}^k_1(z)\\ \vdots \\ {\varvec{\varphi }}^k_{n_R^{max}-k}(z) \end{array}\right) ,\quad 0\le k\le B-1, \end{aligned}$$

with \({\varvec{\varphi }}^k_r(z)=(\varphi _{(r,k,0)}(z),\ldots ,\varphi _{(r,k,n_R^{max}-r-k)}(z))^T\), and where \(^T\) represents the transpose operator. In a similar way, the organisation of states within \({\mathscr {S}}\) by levels and sub-levels, and the consideration of the transition rates given in Eq. (1), lead to

$$\begin{aligned} \mathbf{A}(z)= & {} \left( \begin{array}{cccccc} \mathbf{A}_{0,0}(z) &{} \mathbf{A}_{0,1}(z) &{} \mathbf{0} &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{A}_{1,0}(z) &{} \mathbf{A}_{1,1}(z) &{} \mathbf{A}_{1,2}(z) &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{0} &{} \mathbf{A}_{2,1}(z) &{} \mathbf{A}_{2,2}(z) &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{A}_{B-2,B-2}(z) &{} \mathbf{A}_{B-2,B-1}(z)\\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{A}_{B-1,B-2}(z) &{} \mathbf{A}_{B-1,B-1}(z) \end{array}\right) , \end{aligned}$$

where the sub-matrix \(\mathbf{A}_{k,k'}(z)\) contains in an ordered fashion, those coefficients in the system, Eq. (2), related to transitions from states in level \({\mathscr {S}}(k)\) to states in level \({\mathscr {S}}(k')\). The specific structure by sub-levels allows us to write the following expressions

$$\begin{aligned} \mathbf{A}_{k,k}(z)= & {} \left( \begin{array}{cccccc} \mathbf{B}^{k,k}_{0,0}(z) &{} \mathbf{B}^{k,k}_{0,1}(z) &{} \mathbf{0} &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{B}^{k,k}_{1,0}(z) &{} \mathbf{B}^{k,k}_{1,1}(z) &{} \mathbf{B}^{k,k}_{1,2}(z) &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{0} &{} \mathbf{B}^{k,k}_{2,1}(z) &{} \mathbf{B}^{k,k}_{2,2}(z) &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{B}^{k,k}_{n_R^{max}-k-1,n_R^{max}-k-1}(z) &{} \mathbf{B}^{k,k}_{n_R^{max}-k-1,n_R^{max}-k}(z)\\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{B}^{k,k}_{n_R^{max}-k,n_R^{max}-k-1}(z) &{} \mathbf{B}^{k,k}_{n_R^{max}-k,n_R^{max}-k}(z) \end{array}\right) ,\\ \mathbf{A}_{k,k-1}(z)= & {} \left( \begin{array}{cccccc} \mathbf{B}^{k,k-1}_{0,0}(z) &{} \mathbf{B}^{k,k-1}_{0,1}(z) &{} \mathbf{0} &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{0} &{} \mathbf{B}^{k,k-1}_{1,1}(z) &{} \mathbf{B}^{k,k-1}_{1,2}(z) &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{B}^{k,k-1}_{2,2}(z) &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{B}^{k,k-1}_{n_R^{max}-k-1,n_R^{max}-k}(z) &{} \mathbf{0}\\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{B}^{k,k-1}_{n_R^{max}-k,n_R^{max}-k}(z) &{} \mathbf{B}^{k,k-1}_{n_R^{max}-k,n_R^{max}-k+1}(z) \end{array}\right) ,\\ \mathbf{A}_{k,k+1}(z)= & {} \left( \begin{array}{cccccc} \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{B}_{1,0}^{k,k+1}(z) &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{0} &{} \mathbf{B}_{2,1}^{k,k+1}(z) &{} \mathbf{0} &{} \dots &{} \mathbf{0} &{} \mathbf{0} \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{B}^{k,k+1}_{n_R^{max}-k-1,n_R^{max}-k-2}(z) &{} \mathbf{0}\\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{0} &{} \dots &{} \mathbf{0} &{} \mathbf{B}^{k,k+1}_{n_R^{max}-k,n_R^{max}-k-1}(z) \end{array}\right) , \end{aligned}$$

where the dimensions of the sub-blocks \(\mathbf{0}\) in the previous expressions have been omitted. We note that, in fact, the dimensions of a sub-block \(\mathbf{0}\) corresponding to the group of rows \({\mathscr {S}}(k;r)\) and the group of columns \({\mathscr {S}}(k';r')\) are \(J(k;r)\times J(k';r')\). Expressions for the sub-matrices \(\mathbf{B}^{k,k'}_{r,r'}(z)\) can be obtained from Eq. (2) as

$$\begin{aligned} (\mathbf{B}_{r,r}^{k,k-1}(z))_{ij}= & {} \left\{ \begin{array}{ll} \gamma \; k \; (z+\varDelta _{(r,k,i)})^{-1}, &{} {\mathrm{if}\,j=i+1},\\ 0, &{} \mathrm{otherwise}, \end{array}\right. \end{aligned}$$

where \(1\le i\le J(k;r)\), \(1\le j\le J(k-1;r)\), \(1\le k\le B-1\) and \(0\le r\le n_R^{max}-k\);

$$\begin{aligned} (\mathbf{B}_{r,r+1}^{k,k-1}(z))_{ij}= & {} \left\{ \begin{array}{ll} k_\mathrm{off} \; k \; (z+\varDelta _{(r,k,i)})^{-1}, &{} {\mathrm{if}\,j=i},\\ 0, &{} \mathrm{otherwise}, \end{array}\right. \end{aligned}$$

where \(1\le i\le J(k;r)\), \(1\le j\le J(k-1;r{+}1)\), \(1\le k\le B{-}1\) and \(0\le r\le n_R^{max}-k{-}1\);

$$\begin{aligned} (\mathbf{B}_{r,r-1}^{k,k}(z))_{ij}= & {} \left\{ \begin{array}{ll} k_s \; r \; (z+\varDelta _{(r,k,i)})^{-1}, &{} {\mathrm{if}\,j=i},\\ 0, &{} \mathrm{otherwise}, \end{array}\right. \end{aligned}$$

where \(1\le i\le J(k;r)\), \(1\le j\le J(k;r-1)\), \(0\le k\le B-1\) and \(1\le r\le n_R^{max}-k\);

$$\begin{aligned} (\mathbf{B}_{r,r}^{k,k}(z))_{ij}= & {} \left\{ \begin{array}{ll} k_e \; i \; (z+\varDelta _{(r,k,i)})^{-1}, &{} {\mathrm{if}\,j=i-1},\\ 0, &{} \mathrm{otherwise}, \end{array}\right. \end{aligned}$$

where \(1\le i\le J(k;r)\), \(1\le j\le J(k;r)\), \(0\le k\le B-1\) and \(0\le r\le n_R^{max}-k\);

$$\begin{aligned} (\mathbf{B}_{r,r+1}^{k,k}(z))_{ij}= & {} \left\{ \begin{array}{ll} (\nu _0+\nu _1 \; \sigma (k)) \; (z+\varDelta _{(r,k,i)})^{-1}, &{} {\mathrm{if}\,j=i},\\ \delta \; i \; (z+\varDelta _{(r,k,i)})^{-1}, &{} {\mathrm{if}\,j=i-1},\\ 0, &{} \mathrm{otherwise}, \end{array}\right. \end{aligned}$$

where \(1\le i\le J(k;r)\), \(1\le j\le J(k;r+1)\), \(0\le k\le B-1\) and \(0\le r\le n_R^{max}-k-1\); and

$$\begin{aligned} (\mathbf{B}_{r,r-1}^{k,k+1}(z))_{ij}= & {} \left\{ \begin{array}{ll} k_\mathrm{on}\; r \; n_L \; (z+\varDelta _{(r,k,i)})^{-1}, &{} {\mathrm{if}\,j=i},\\ 0, &{} \mathrm{otherwise}, \end{array}\right. \end{aligned}$$

where \(1\le i\le J(k;r)\), \(1\le j\le J(k{+}1;r{-}1)\), \(0\le k\le B-2\) and \(1\le r\le n_R^{max}-k\). Finally, the expression for the vector \(\mathbf{b}(z)\) in Eq. (7) is given by

$$\begin{aligned} \mathbf{b}(z)= & {} \left( \begin{array}{c} \mathbf{0}\\ \mathbf{0}\\ \vdots \\ \mathbf{0}\\ \mathbf{A}_{B-1,B}(z) \; \mathbf{e}_{J(B)} \end{array}\right) , \end{aligned}$$

where \(\mathbf{e}_j\) represents a column vector of ones with dimension j. Then, following a forward-elimination backward-substitution method suggested by Ciarlet [32, p. 144], Algorithm 1 is obtained. This Algorithm allows us to compute all the Laplace–Stieltjes transforms in Eq. (2) in an efficient and recursive manner.

Algorithm 1 [to obtain the Laplace–Stieltjes transforms \({\varphi }^B_{(n_1,n_2,n_3)}(z)\)]

figure a

Finally, the order moments, \(m_{(n_1,n_2,n_3)}^{B,(l)}\), of the random variable \(T^B_{(n_1,n_2,n_3)}\) can be obtained by means of a matrix formalism similar to that described for Eq. (3). In particular, the system given by Eq. (3) can be expressed in matrix form as

$$\begin{aligned} \mathbf{m}^{(l)}= & {} \mathbf{A}(0) \; \mathbf{m}^{(l)}+{\tilde{\mathbf{b}}}^{l}, \end{aligned}$$

with

$$\begin{aligned} ({\tilde{\mathbf{b}}}^{l})_i= & {} l \; \frac{1}{\varDelta _i} \; (\mathbf{m}^{(l-1)})_i,\quad 0\le i\le \sum \limits _{k=0}^{B-1} \; \#{\mathscr {S}}(k), \end{aligned}$$

where \(\varDelta _i\) represents the value \(\varDelta _{(n_1,n_2,n_3)}\) for the state \((n_1,n_2,n_3)\) corresponding to row i. The vector \({\tilde{\mathbf{b}}}^l\) can be structured by blocks as follows

$$\begin{aligned} {\tilde{\mathbf{b}}}^l= & {} \left( \begin{array}{c} {\tilde{\mathbf{b}}}^l_0\\ {\tilde{\mathbf{b}}}^l_1\\ \vdots \\ {\tilde{\mathbf{b}}}^l_{B-2}\\ {\tilde{\mathbf{b}}}^l_{B-1} \end{array}\right) . \end{aligned}$$

Similar arguments to those used to derive Algorithm 1 lead to Algorithm 1 (continuation), which allows us to compute the moments in vector \(\mathbf{m}^{(p)}\) from those previously computed in vector \(\mathbf{m}^{(p-1)}\), starting at \(\mathbf{m}^{(0)}={\varvec{\varphi }}(0)\) and until the desired order, \(p=l\), is reached.

Algorithm 1 (Continuation) [to obtain the l-th order moments \(m_{(n_1,n_2,n_3)}^{B,(l)}\)]

figure b

We now turn to the second descriptor analysed in Sect. 3.2. Equation (6) can be expressed in matrix form as

$$\begin{aligned} {\varvec{\phi }}(s) \ = \ \mathbf{\overline{A}}(s) \; {\varvec{\phi }}(s)+\mathbf{\overline{b}}, \end{aligned}$$
(8)

where we are omitting again B in the notation, and where the probability generating functions \(\phi _{(n_1,n_2,n_3)}^B(s)\) for \((n_1,n_2,n_3)\in \cup _{k=0}^{B-1}{\mathscr {S}}(k)\) are stored in a column vector \({\varvec{\phi }}(s)\), which is organised in sub-vectors following the structure of levels and sub-levels of \({\mathscr {S}}\). This follows similar arguments to those used for the vector \({\varvec{\varphi }}(z)\). A direct comparison between Eqs. (2) and (6) allows us to write \(\mathbf{\overline{A}}(s)=\mathbf{A}(z=0)\), except for sub-blocks \(\mathbf{B}_{r,r+1}^{k,k}(z)\), which should be replaced by \(\mathbf{\overline{B}}_{r,r+1}^{k,k}(s)\) given by

$$\begin{aligned} (\mathbf{\overline{B}}_{r,r+1}^{k,k}(s))_{ij}= & {} \left\{ \begin{array}{ll} (\nu _0 + \nu _1 \; \sigma (k)) \; s \; \varDelta _{(r,k,i)}^{-1}, &{} {\mathrm{if}\,j=i},\\ \delta \; i \; \varDelta _{(r,k,i)}^{-1}, &{} {\mathrm{if}\,j=i-1},\\ 0, &{} \mathrm{otherwise}, \end{array}\right. \end{aligned}$$

for \(1\le i\le J(k;r)\), \(1\le j\le J(k;r+1)\), \(0\le k\le B-1\) and \(0\le r\le n_R^{max}-k-1\). Finally, the vector \(\mathbf{\overline{b}}=\mathbf{b}(z=0)\) and Algorithm 1 leads to the computation of the vector \({\varvec{\phi }}(s)\) from Eq. (8).

The factorial moments \(n_{(n_1,n_2,n_3)}^{B,(p)}\) and the probabilities \(\alpha _{(n_1,n_2,n_3)}^B(a)\) of the random variable \(N^B_{(n_1,n_2,n_3)}\) can be computed following similar arguments to those provided above, and are not included here.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Higuera, L., López-García, M., Lythe, G., Molina-París, C. (2017). IL-2 Stimulation of Regulatory T Cells: A Stochastic and Algorithmic Approach. In: Graw, F., Matthäus, F., Pahle, J. (eds) Modeling Cellular Systems. Contributions in Mathematical and Computational Sciences, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45833-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45833-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45831-1

  • Online ISBN: 978-3-319-45833-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics