Skip to main content

Distribution Approximations for the Chemical Master Equation: Comparison of the Method of Moments and the System Size Expansion

  • Chapter
  • First Online:
Modeling Cellular Systems

Abstract

The stochastic nature of chemical reactions has resulted in an increasing research interest in discrete-state stochastic models and their analysis. A widely used approach is the description of the temporal evolution of such systems in terms of a chemical master equation (CME). In this paper we study two approaches for approximating the underlying probability distributions of the CME. The first approach is based on an integration of the statistical moments and the reconstruction of the distribution based on the maximum entropy principle. The second approach relies on an analytical approximation of the probability distribution of the CME using the system size expansion, considering higher order terms than the linear noise approximation. We consider gene expression networks with unimodal and multimodal protein distributions to compare the accuracy of the two approaches. We find that both methods provide accurate approximations to the distributions of the CME while having different benefits and limitations in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Noncentral moments can be easily obtained from central ones. For instance, the second noncentral moment \(\mu ^{(2)}\) is obtained from the variance \(\sigma ^2\) and the mean \(\mu \) as \(\mu ^{(2)} = \sigma ^2 + \mu ^2\).

References

  1. H. H. McAdams and A. Arkin.: “Stochastic mechanisms in gene expression”. Proc Natl Acad Sci 94.3 (1997), pp. 814–819.

    Google Scholar 

  2. P. S. Swain, M. B. Elowitz, and E. D. Siggia.: “Intrinsic and extrinsic contributions to stochasticity in gene expression”. Proc Natl Acad Sci 99.20 (2002), pp. 12795–12800.

    Google Scholar 

  3. T. J. Perkins and P. S. Swain.: “Strategies for cellular decision-making”. Mol Syst Biol 5 (2009).

    Google Scholar 

  4. M. B. Elowitz et al.: “Stochastic gene expression in a single cell”. Sci Signal 297.5584 (2002), p. 1183.

    Google Scholar 

  5. D. Wilkinson.: Stochastic Modelling for Systems Biology. Chapman & Hall, 2006.

    Google Scholar 

  6. D. T. Gillespie.: “Exact stochastic simulation of coupled chemical reactions”. J Phys Chem 81.25 (1977), pp. 2340–2361.

    Google Scholar 

  7. N. Maheshri and E. K. O’Shea.: “Living with noisy genes: how cells function reliably with inherent variability in gene expression”. Annu Rev Biophys Biomol Struct 36 (2007), pp. 413–434.

    Google Scholar 

  8. B. Munsky and M. Khammash.: “The finite state projection algorithm for the solution of the chemical master equation”. J Chem Phys 124.4 (2006), p. 044104.

    Google Scholar 

  9. M. Mateescu et al.: “Fast Adaptive Uniformisation of the Chemical Master Equation”. IET Syst Biol 4.6 (2010), pp. 441–452.

    Google Scholar 

  10. D. T. Gillespie.: “Stochastic simulation of chemical kinetics”. Annu Rev Phys Chem 58 (2007), pp. 35–55.

    Google Scholar 

  11. J. Elf and M. Ehrenberg.: “Fast evaluation of fluctuations in biochemical networks with the linear noise approximation”. Genome Res 13.11 (2003), pp. 2475–2484.

    Google Scholar 

  12. R Grima. “An effective rate equation approach to reaction kinetics in small volumes: Theory and application to biochemical reactions in nonequilibrium steady-state conditions”. J Chem Phys 133.3 (2010), p. 035101.

    Google Scholar 

  13. P. Thomas, H. Matuschek, and R. Grima.: “How reliable is the linear noise approximation of gene regulatory networks?” BMC Genomics 14. Suppl 4 (2013), S5.

    Google Scholar 

  14. S. Engblom.: “Computing the moments of high dimensional solutions of the master equation”. Appl Math Comput 180 (2 2006), pp. 498 -515.

    Google Scholar 

  15. C. Gillespie. “Moment-closure approximations for mass-action models”. IET Syst Biol 3.1 (2009), pp. 52–58.

    Google Scholar 

  16. A. Ale, P. Kirk, and M. P. H. Stumpf.: “A general moment expansion method for stochastic kinetic models”. J Chem Phys 138.17 (2013), p. 174101.

    Google Scholar 

  17. A. Andreychenko, L. Mikeev, and V.Wolf.: “Model Reconstruction for Moment-Based Stochastic Chemical Kinetics”. ACM Trans Model Comput Simul 25.2 (2015), 12:1–12:19.

    Google Scholar 

  18. A. Andreychenko, L. Mikeev, and V. Wolf.: “Reconstruction of Multimodal Distributions for Hybrid Moment-based Chemical Kinetics”. To appear in Journal of Coupled Systems and Multiscale Dynamics (2015).

    Google Scholar 

  19. N. G. Van Kampen.: Stochastic Processes in Physics and Chemistry. Third. Amsterdam: Elsevier, Amsterdam, 1997.

    Google Scholar 

  20. P. Thomas and R. Grima. : “Approximate probability distributions of the master equation”. Phys Rev E 92.1 (2015), p. 012120.

    Google Scholar 

  21. L. Bortolussi.: “Hybrid Behaviour of Markov Population Models”. Information and Computation (2015 (accepted)).

    Google Scholar 

  22. P. Thomas, N. Popović, and R. Grima.: “Phenotypic switching in gene regulatory networks”. Proc Natl Acad Sci 111.19 (2014), pp. 6994–6999.

    Google Scholar 

  23. D. T. Gillespie: “A diffusional bimolecular propensity function”. J Chem Phys 131.16 (2009), p. 164109.

    Google Scholar 

  24. P. Thomas, H. Matuschek, and R. Grima.: “Computation of biochemical pathway fluctuations beyond the linear noise approximation using iNA”. Bioinformatics and Biomedicine (BIBM), 2012 IEEE International Conference on. IEEE. 2012, pp. 1–5.

    Google Scholar 

  25. P. Whittle.: “On the Use of the Normal Approximation in the Treatment of Stochastic Processes”. J R Stat Soc Series B Stat Methodol 19.2 (1957), pp. 268–281.

    Google Scholar 

  26. J. H. Matis and T. R. Kiffe.: “On interacting bee/mite populations: a stochastic model with analysis using cumulant truncation”. Environ Ecol Stat 9.3 (2002), pp. 237–258.

    Google Scholar 

  27. I. Krishnarajah et al.: “Novel moment closure approximations in stochastic epidemics”. Bull Math Biol 67.4 (2005), pp. 855–873.

    Google Scholar 

  28. A. Singh and J. P. Hespanha.: “Lognormal moment closures for biochemical reactions”. Decision and Control, 2006 45th IEEE Conference on. IEEE. 2006, pp. 2063–2068.

    Google Scholar 

  29. A. Singh and J. P. Hespanha.: “Approximate moment dynamics for chemically reacting systems”. Automatic Control, IEEE Transactions on 56.2 (2011), pp. 414–418.

    Google Scholar 

  30. D. Schnoerr, G. Sanguinetti, and R. Grima.: “Comparison of different momentclosure approximations for stochastic chemical kinetics”. J Chem Phys 143.18 (2015), p. 185101.

    Google Scholar 

  31. D. Schnoerr, G. Sanguinetti, and R. Grima.: “Validity conditions for moment closure approximations in stochastic chemical kinetics”. J Chem Phys 141.8 (2014), p. 084103.

    Google Scholar 

  32. R. Grima.: “A study of the accuracy of moment-closure approximations for stochastic chemical kinetics”. J Chem Phys 136.15 (2012), p. 154105.

    Google Scholar 

  33. J. Hasenauer et al.: “Method of conditional moments for the Chemical Master Equation”. J Math Biol (2013), pp. 1–49.

    Google Scholar 

  34. M. Lapin, L. Mikeev, and V. Wolf.: “SHAVE - Stochastic Hybrid Analysis of Markov Population Models”. Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control (HSCC’11). ACM International Conference Proceeding Series. 2011.

    Google Scholar 

  35. A.L. Berger, V.J.D. Pietra, S.A.D. Pietra, A Maximum Entropy Approach to Natural Language Processing. Comput Ling 22(1), 39–71 (1996)

    Google Scholar 

  36. R. Abramov.: “The multidimensional maximum entropy moment problem: a review of numerical methods”. Commun Math Sci 8.2 (2010), pp. 377–392.

    Google Scholar 

  37. Z. Wu et al.: “A fast Newton algorithm for entropy maximization in phase determination”. SIAM Rev 43.4 (2001), pp. 623–642.

    Google Scholar 

  38. L. R. Mead and N. Papanicolaou: “Maximum entropy in the problem of moments”. J Math Phys 25 (1984), p. 2404.

    Google Scholar 

  39. G. W. Alldredge et al.: “Adaptive change of basis in entropy-based moment closures for linear kinetic equations”. J Comput Phys 258 (2014), pp. 489–508.

    Google Scholar 

  40. Á . Tari, M. Telek, and P. Buchholz.: “A unified approach to the moments based distribution estimation-unbounded support”. Formal Techniques for Computer Systems and Business Processes. Springer, 2005, pp. 79–93.

    Google Scholar 

  41. J. Elf et al.: “Mesoscopic kinetics and its applications in protein synthesis”. Systems Biology. Springer, 2005, pp. 95–18.

    Google Scholar 

  42. L. Comtet.: Advanced Combinatorics: The art of finite and infinite expansions. Springer Science & Business Media, 1974.

    Google Scholar 

  43. E. Giampieri et al.: “Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence”. PloS one 10.6 (2015), e0118442.

    Google Scholar 

  44. V. Shahrezaei and P. S. Swain.: “Analytical distributions for stochastic gene expression”. Proc Natl Acad Sci 105.45 (2008), pp. 17256–17261.

    Google Scholar 

  45. P. Thomas, A. V. Straube, and R. Grima.: “Communication: Limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks”. J Chem Phys 135(18), 181103 (2011)

    Google Scholar 

  46. K. R. Sanft, D. T. Gillespie, and L. R. Petzold.: “Legitimacy of the stochastic Michaelis-Menten approximation”. Syst Biol, IET 5.1 (2011), pp. 58–69.

    Google Scholar 

  47. D. A. Levin, Y. Peres, and E. L. Wilmer.: Markov chains and mixing times. American Mathematical Soc., 2009.

    Google Scholar 

  48. T. M. Cover and J. A. Thomas.: Elements of information theory. John Wiley & Sons, 2012.

    Google Scholar 

Download references

Acknowledgements

PT acknowledges support from the Royal Commission for the Exhibition of 1851 in form of a Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andreychenko, A., Bortolussi, L., Grima, R., Thomas, P., Wolf, V. (2017). Distribution Approximations for the Chemical Master Equation: Comparison of the Method of Moments and the System Size Expansion. In: Graw, F., Matthäus, F., Pahle, J. (eds) Modeling Cellular Systems. Contributions in Mathematical and Computational Sciences, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45833-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45833-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45831-1

  • Online ISBN: 978-3-319-45833-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics