Skip to main content

Transformation, Normalization, and Batch Effect in the Analysis of Mass Spectrometry Data for Omics Studies

  • Chapter
  • First Online:
Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

Abstract

Data transformation, normalization, and handling of batch effect are a key part of data analysis for almost all spectrometry-based omics data. This paper reviews and contrasts these three distinct aspects. We present a systematic overview of the key approaches and critically review some common procedures. Much of this paper is inspired by mass spectrometry-based experimentation, but most of our discussion carries over to omics data using distinct spectrometric approaches generally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aitchison, J. (1986). The statistical analysis of compositional data. Caldwell: Blackburn.

    Book  MATH  Google Scholar 

  2. Beer, A. (1852). Annalen der Physic und Chime, 86, 78–88.

    Article  Google Scholar 

  3. Cairns, D. A. (2011). Statistical issues in quality control of proteomic analyses: Good experimental design and planning. Proteomics, 11, 1037–1048.

    Article  Google Scholar 

  4. Cox, D. R., & Oakes, D. (1984). Analysis of survival data. London: Chapman and Hall.

    Google Scholar 

  5. Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K., & Lindon, J. C. (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Analytical Chemistry, 78, 2262–2267.

    Article  Google Scholar 

  6. Eidhammer, I., Barsnes, H., Eide, G. E., & Martens, L. (2013). Computational and statistical methods for protein quantification by mass spectrometry. Chichester: Wiley.

    Book  Google Scholar 

  7. Jolliffe, I. T. (2002). Principal component analysis. New York: Springer.

    MATH  Google Scholar 

  8. Kakourou, A., Vach, W., Nicolardi, S., van der Burgt, Y., & Mertens, B. (2016). Accounting for isotopic clustering in Fourier transform mass spectrometry data analysis for clinical diagnostic studies. Statistical Applications in Genetics and Molecular Biology, 15(5), 415–430. doi:10.1515/sagmb-2016-0005.

    Article  MathSciNet  Google Scholar 

  9. Klein, J. P., van Houwelingen, H. C., Ibrahim, J. G., & Scheike, T. H. (2014). Handbook of survival analysis. Boca Raton: Chapman and Hall/CRC Press.

    MATH  Google Scholar 

  10. Krzanowski, W. J., Jonathan, P., McCarthy, W. V., & Thomas, M. R (1995). Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data. Applied Statistics, 44, 101–115.

    Article  MATH  Google Scholar 

  11. Mertens, B. J. A., De Noo, M. E., Tollenaar, R. A. E. M., & Deelder, A. M. (2006). Mass spectrometry proteomic diagnosis: Enacting the double cross-validatory paradigm. Journal of Computational Biology, 13(9), 1591–1605.

    Article  MathSciNet  Google Scholar 

  12. Molenberghs, G., & Verbeke, G. (2000). Linear mixed models for longitudinal data. New York: Springer.

    Book  MATH  Google Scholar 

  13. Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate classification and calibration. Chichester: NIR Publications.

    Google Scholar 

  14. Sauve, A., & Speed, T. (2004). Normalization, baseline correction and alignment of high-throughput mass spectrometry data. In Proceedings of the Genomic Signal Processing and Statistics Workshop, Baltimore, MO.

    Google Scholar 

  15. Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods (7th ed.). Ames: Iowa State University Press.

    MATH  Google Scholar 

  16. Vach, W. (2013). Regression models as a tool in medical research. Boca Raton: Chapman and Hall/CRC Press.

    MATH  Google Scholar 

  17. van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

    Article  Google Scholar 

  18. van Houwelingen, H. C., & Putter, H. (2012). Dynamic prediction in clinical survival analysis. Boca Raton: Chapman and Hall/CRC Press.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the European Community’s Seventh Framework Programme FP7/2011: Marie Curie Initial Training Network MEDIASRES (“Novel Statistical Methodology for Diagnostic/Prognostic and Therapeutic Studies and Systematic Reviews,” www.mediasres-itn.eu) with the Grant Agreement Number 290025 and by funding from the European Union’s Seventh Framework Programme FP7/ Health/F5/2012: MIMOmics (“Methods for Integrated Analysis of Multiple Omics Datasets,” http://www.mimomics.eu) under the Grant Agreement Number 305280.

Thanks to Mar Rodríguez Girondo for critical comments on an early version of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart J. A. Mertens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mertens, B.J.A. (2017). Transformation, Normalization, and Batch Effect in the Analysis of Mass Spectrometry Data for Omics Studies. In: Datta, S., Mertens, B. (eds) Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45809-0_1

Download citation

Publish with us

Policies and ethics