Skip to main content

Incompleteness, Undecidability and Automated Proofs

(Invited Talk)

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

Incompleteness and undecidability have been used for many years as arguments against automatising the practice of mathematics. The advent of powerful computers and proof-assistants – programs that assist the development of formal proofs by human-machine collaboration – has revived the interest in formal proofs and diminished considerably the value of these arguments.

In this paper we discuss some challenges proof-assistants face in handling undecidable problems – the very results cited above – using for illustrations the generic proof-assistant Isabelle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Included in the short radio presentation, see [24].

  2. 2.

    The words are engraved on Hilbert’s tombstone in Göttingen. This is a triple irony: their use as an epitaph, the fact that the day before the talk, Hilbert’s optimism was undermined by Gödel’s presentation of the incompleteness theorem, whose exceptional significance was, with the exception of John von Neumann, completely missed by the audience.

  3. 3.

    The approximate equivalent of all the digitised texts held by the US Library of Congress.

  4. 4.

    Historically, the syntactic class of partial functions constructed recursively is called partially recursive functions, see [25, 29]. This class coincides with the semantic partial functions implementable by standard models of computation (Turing machines, URMs, the \(\lambda \)-calculus etc.) – the partially computable functions.

  5. 5.

    In Isabelle, the @ symbol indicates concatenation of lists. Also note that this definition of halts assumes functions with some number of inputs and a single output.

  6. 6.

    Of course it should be noted that if an input is not within that domain of a function, Isabelle’s attempt to evaluate is likely not to terminate. However, consequential strange behaviours can be observed, such as in \(g_2\).

References

  1. Alf homepage. http://homepages.inf.ed.ac.uk/wadler/realworld/alf.html. Accessed 25 Oct 2014

  2. Archive of formal proofs. http://afp.sourceforge.net. Accessed 18 May 2016

  3. Coq homepage. http://coq.inria.fr/. Accessed 25 Oct 2014

  4. HOL4 homepage. http://hol.sourceforge.net/. Accessed 25 Oct 2014

  5. Isabelle homepage. http://isabelle.in.tum.de/. Accessed 20 Oct 2014

  6. Matita hompage. http://matita.cs.unibo.it/. Accessed 25 Oct 2014

  7. Flyspeck project, September 2014. http://aperiodical.com/2014/09/the-flyspeck-project-is-complete-we-know-how-to-stack-balls

  8. Asperti, A., Ricciotti, W.: Formalizing turing machines. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 1–25. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Benzmüller, C., Woltzenlogel Paleo, B.: Automating Gödel’s ontological proof of God’s existence with higher-order automated theorem provers. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014, Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 93–98. IOS Press (2014)

    Google Scholar 

  10. Du Bois-Reymond, E.H.: Über die Grenzen des Naturerkennens; Die sieben Welträthsel, zwei Vorträge. Von Veit, Leipzig (1898)

    Google Scholar 

  11. Bourbaki, N.: Theory of Sets. Elements of Mathematics. Springer, Heidelberg (1968)

    MATH  Google Scholar 

  12. Calude, C.: Theories of Computational Complexity, North-Holland, Amsterdam (1988)

    Google Scholar 

  13. Calude, C.S., Calude, E., Marcus, S.: Passages of proof. Bull. Eur. Assoc. Theor. Comput. Sci. 84, 167–188 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Calude, C.S., Hay, N.J.: Every computably enumerable random real is provably computably enumerable random. Logic J. IGPL 17, 325–350 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Calude, C.S., Müller, C.: Formal proof: reconciling correctness and understanding. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625, pp. 217–232. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Cooper, S.B.: Computability Theory. Chapman Hall/CRC, London (2004)

    MATH  Google Scholar 

  17. Edwards, C.: Automated proofs. Math struggles with the usability of formal proofs. Commun. ACM 59(4), 13–15 (2016)

    Article  Google Scholar 

  18. Feferman, S.: Are there absolutely unsolvable problems? Gödel’s dichotomy. Philosophia Math. 14(2), 134–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gödel, K.: Some basic theorems on the foundations of mathematics and their implications. In: Feferman, S., Dawson Jr., J.W., Goldfarb, W., Parsons, C., Solovay, R.M. (eds.) Collected Works. Unpublished Essays and Lectures. vol. III, pp. 304–323. Oxford University Press (1995)

    Google Scholar 

  20. Gordon, M.: From LCF to HOL: a short history. In: Proof, Language, and Interaction, pp. 169–186 (2000)

    Google Scholar 

  21. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162(3), 1065–1185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hernández-Orozco, S., Hernández-Quiroz, F., Zenil, H., Sieg, W.: Rare speed-up in automatic theorem proving reveals tradeoff between computational time and information value (2015). http://arxiv.org/abs/1506.04349

  23. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean Pythagorean triples problem via cube-and-conquer (2016). http://arxiv.org/abs/1605.00723v1 [cs.DM]

    Google Scholar 

  24. Hilbert, D.: Hilbert’s 1930 radio speech. https://www.youtube.com/watch?v=EbgAu_X2mm4

  25. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)

    Google Scholar 

  26. Konev, B., Lisitsa, A.: A SAT attack on the Erdös discrepancy conjecture (2014). http://arxiv.org/abs/1402.2184v2

  27. Martin-Löf, P.: Verification then and now. In: De Pauli-Schimanovich, W., Koehler, E., Stadler, F. (eds.) The Foundational Debate, Complexity and Constructivity in Mathematics and Physics, pp. 187–196. Kluwer, Dordrecht (1995)

    Google Scholar 

  28. Norrish, M.: Mechanised computability theory. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 297–311. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Springer, Heidelberg (1987)

    Book  MATH  Google Scholar 

  30. Szasz, N.: A machine checked proof that Ackermann’s function is not primitive recursive. In: Huet, G. (ed.) Logical Environments, pp. 31–7. University Press (1991)

    Google Scholar 

  31. Tao, T.: The Erdös discrepancy problem (2015). http://arxiv.org/abs/1509.05363v5

  32. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley and Los Angeles (1951)

    MATH  Google Scholar 

  33. Thompson, D.: Formalisation vs. understanding. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 290–300. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  34. Xu, J., Zhang, X., Urban, C.: Mechanising turing machines and computability theory in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 147–162. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  35. Zammit, V.: A mechanisation of computability theory in HOL. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  36. Zammit, V.: On the Readability of Machine Checkable Formal Proofs. Ph.D. Thesis, University of Kent, March 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian S. Calude .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Calude, C.S., Thompson, D. (2016). Incompleteness, Undecidability and Automated Proofs. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics