Skip to main content

Nanotechnology Applications on Lignocellulosic Biomass Pretreatment

  • Chapter
  • First Online:
Nanotechnology for Bioenergy and Biofuel Production

Abstract

Global population growth raises questions concerning the environment and energy production. Fossil fuels are well known and utilized energy source. These are not renewable and contribute to the greenhouse gas effect. The search for alternative energy sources and solution for environmental problems has a growing concern in recent years. The lignocellulosic biomass has emerged as a solution to our energy and environmental concerns since it is rich within feedstock and can be converted to biofuels and/or biomaterials. This approach is interesting because these biomasses can become renewable sources of energy and pollute less than fossil fuels when transformed into biofuels, which is a green fuel. However, some steps are necessary to transform these lignocellulosic biomasses into biofuels or biomaterials. Nanotechnology is a multidisciplinary area of study with several applications that can be used to improve the lignocellulose bioconversion process, used both in production of liquid fuels through conversion by fermentation, gasification, or catalysis and development of new nanoscale catalyzers/materials. Nanoscale or sub-nanoscale instrumentation facilitates understanding of the lignocellulosic biomass cell wall ultrastructure and enzymatic mechanisms. This aspect contributes in the development of sophisticated instrumentation techniques for lignocellulosic fiber analysis such as scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), and atomic force microscopy (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor V, Cicek NS, Berlin A, Levin D (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  Google Scholar 

  • Albuquerque T, Gomes S, Marques J Jr, da Silva I Jr, Rocha M (2014) Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today 225:33–40

    Google Scholar 

  • Angles M, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353

    Article  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  Google Scholar 

  • Biao H, Xue-rong C, Dai Da-song TL, Wen O, Li-rong T (2011) Preparation of nanocellulose with cation-exchange resin catalysed hydrolysis. INTECH Open Access Publisher. http://cdn.intechweb.org/pdfs/19706.pdf

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180

    Article  Google Scholar 

  • Bonevich JE, Haller WK (2010) Measuring the size of nanoparticles using transmission electron microscopy (TEM). NIST-NCL Joint Assay Protocol, PCC-7 Version, 1

    Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169

    Article  Google Scholar 

  • Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457

    Article  Google Scholar 

  • Cherian E, Dharmendirakumar M, Baskar G (2015) Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin J Catal 36(8):1223–1229

    Article  Google Scholar 

  • Chundawat SP, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4(3):973–984

    Article  Google Scholar 

  • Corrales RC, Mendes FM, Perrone CC, Sant’Anna C, de Souza W, Abud Y, Bon EP, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol Biofuels 5(1):1–8

    Article  Google Scholar 

  • Dedavid BA, Gomes CI, Machado G (2007) Microscopia eletrônica de varredura: aplicações e preparação de amostras: materiais poliméricos, metálicos e semicondutores. Rio Grande do Sul, Brazil: EdiPUCRS, 9–26

    Google Scholar 

  • Dinçer A, Telefoncu A (2007) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B: Enzym 45(1):10–14

    Article  Google Scholar 

  • Duran N, Paula Lemes A, Seabra BA (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6(1):16–28

    Article  Google Scholar 

  • Eichhorn SJ, Marcovich NE, Capadona JR, Rowan SJ, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, 613p

    Google Scholar 

  • González I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. Bioresources 7(4):5167–5180

    Article  Google Scholar 

  • Hamid SBA, Zain SK, Das R, Centi G (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr Polym 138:349–355

    Article  Google Scholar 

  • Han Y, Yuan L, Li G, Huang L, Qin T, Chu F, Tang C (2016) Renewable polymers from lignin via copper-free thermal click chemistry. Polymer 83:92–100

    Article  Google Scholar 

  • Hassan EA, Hassan ML, Oksman K (2011) Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci 43(1):76–82

    Google Scholar 

  • Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  Google Scholar 

  • Herrmann PS, da Silva MA, Bernardes R, Job AE, Colnago LA, Frommer JE, Mattoso LH (1997) Microscopia de varredura por força: uma ferramenta poderosa no estudo de polímeros. Polímeros: ciência e tecnologia 7:51–61

    Article  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  Google Scholar 

  • Ho KM, Mao X, Gu L, Li P (2008) Facile route to enzyme immobilization: core−shell nanoenzyme particles consisting of well-defined poly (methyl methacrylate) cores and cellulase shells. Langmuir 24(19):11036–11042

    Article  Google Scholar 

  • Huang Y, Qin X, Luo XM, Nong Q, Yang Q, Zhang Z, Gao Y, Lv F, Chen Y, Yu Z, Liu J, Feng J (2015) Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioenergy 77:53–63

    Article  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  Google Scholar 

  • Hussein AK (2015) Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renew Sustain Energy Rev 42:460–476

    Article  Google Scholar 

  • Jemaa N, Paleologou M, Zhang X (2014) U.S. Patent and Trademark Office, Washington, DC. Patente N° 8,709,203

    Google Scholar 

  • Ji S, Lee I (2013) Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. Bioresour Technol 133:45–50

    Article  Google Scholar 

  • Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18(3):189–199

    Article  Google Scholar 

  • Kim S, Holtzapple MT (2006) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):1994–2006

    Article  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6):3160–3165

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  Google Scholar 

  • Lee HV, Hamid SB, Zain SK (2014a) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Scientific World J 2014: Article ID 631013. doi:10.1155/2014/631013

  • Lee I, Wang W, Ji S (2014b) US Patente N° US20120036765 A1

    Google Scholar 

  • Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Liu Y (2012a) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613

    Article  Google Scholar 

  • Li W, Yue J, Liu S (2012b) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485

    Article  Google Scholar 

  • Liao HD, Yuan L, Tong CY, Zhu YH, Li D, Liu XM (2008) Immobilization of cellulase based on polyvinyl alcohol/Fe2O3 nanoparticles. Chem J Chin Univ 8:1564–1568

    Google Scholar 

  • Liao H, Chen D, Yuan L, Zheng M, Zhu Y, Liu X (2010) Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydr Polym 82(3):600–604

    Article  Google Scholar 

  • Liu MQ, Huo WK, Xu X, Jin DF (2015) An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion. J Mol Catal B: Enzym 120:119–126

    Article  Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 63(2):198–204

    Article  Google Scholar 

  • Luu W, Bousfield DW, Kettle J (2011) Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing. TAPPI PaperCon Conference, Atlanta, USA

    Google Scholar 

  • Mäki-Arvela P, Salmi T, Holmbom B, Willför S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses–a review. Chem Rev 111(9):5638–5666

    Article  Google Scholar 

  • Mariño M, Lopes da Silva L, Durán N, Tasic L (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20(4):5908–5923

    Article  Google Scholar 

  • Morais JP, de Freitas Rosa M, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235

    Article  Google Scholar 

  • Morganti P (2013) Saving the environment by nanotechnology and waste raw materials: use of chitin nanofibrils by EU research projects. J Appl Cosmetol 31:89–96

    Google Scholar 

  • Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35(1):146–152

    Article  Google Scholar 

  • Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295(11):975–989

    Article  Google Scholar 

  • Pirani S, Hashaikeh R (2013) Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydr Polym 93(1):357–363

    Article  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  Google Scholar 

  • Rambabu N, Panthapulakkal S, Sain M, Dalai AK (2015) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Indus Crops Products. doi:10.1016/j.indcrop.2015.11.083

    Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LH et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92

    Article  Google Scholar 

  • Saïd Azizi Samir MA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37(11):4313–4316

    Article  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15(2):22–44

    Google Scholar 

  • Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13(9):2373–2384

    Article  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Ten E, Vermerris W (2013) Functionalized polymers from lignocellulosic biomass. State of the art. Polymers 5(2):600–642

    Article  Google Scholar 

  • Tetard LP, Farahi RH, Kalluri UC, Davison BH, Thundat T (2010) Spectroscopy and atomic force microscopy of biomass. Ultramicroscopy 110(6):701–707

    Article  Google Scholar 

  • Timilsena YP, Audu IG, Rakshit SK, Brosse N (2013) Impact of the lignin structure of three lignocellulosic feedstocks on their organosolv delignification. Effect of carbonium ion scavengers. Biomass Bioenergy 52:151–158

    Article  Google Scholar 

  • Vermerris W (2008) Why bioenergy makes sense. Springer, New York, NY

    Book  Google Scholar 

  • Viana LC (2013) Desenvolvimento de filmes celulósicos nanoestruturados a partir da polpa kraft de Pinus sp. Doctoral thesis, UFV, Viçosa, MG, Brazil

    Google Scholar 

  • Wang W (2012) Nanotechnology applications for biomass pretreatment, functional material fabrication and surface modification. Ph.D. Dissertation, Chemical Engineering, Michigan State University, East Lansing, MI

    Google Scholar 

  • Wang W, Ji S, Lee I (2013) Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass Bioenergy 51:35–42

    Article  Google Scholar 

  • Wegner TH, Jones EP (2009) A fundamental review of the relationships between nanotechnology and lignocellulosic biomass. Nanosci Technol Renew Biomater 1:1–41

    Article  Google Scholar 

  • Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 250(1):167–173

    Article  Google Scholar 

  • Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344(15):2069–2072

    Article  Google Scholar 

  • Zhao X, Peng F, Cheng K, Liu D (2009) Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali–peracetic acid pretreatment. Enzyme Microbial Technol 44(1):17–23

    Article  Google Scholar 

  • Zhou J, Chen DZ, Liao HY, Chen Z, Liu X (2010) Simultaneous wet ball milling and mild acid hydrolysis of rice hull. J Chem Technol Biotechnol 85(1):85–90

    Article  Google Scholar 

  • Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13(5):1339–1344

    Article  Google Scholar 

  • Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnatt Allan Rocha de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Oliveira, J.A.R., da Silva Martins, L.H., Komesu, A., Neto, J.M. (2017). Nanotechnology Applications on Lignocellulosic Biomass Pretreatment. In: Rai, M., da Silva, S. (eds) Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-45459-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45459-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45458-0

  • Online ISBN: 978-3-319-45459-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics