Skip to main content

Inflammatory Cytokine Response to Titanium Surface Chemistry and Topography

  • Chapter
  • First Online:
The Immune Response to Implanted Materials and Devices

Abstract

Titanium continues to be one of the most widely utilized biomaterials for use in prosthetic devices to provide anchorage into bone. In particular, titanium implants have found widespread usage in dentistry for the purpose of anchoring dental prostheses providing a superior solution over conventional prostheses for the replacement of lost teeth. A major part of this success stems from its strength and favorable weight, but most importantly its outstanding biocompatibility. Research continues however on processes that can be applied to enhance and improve the clinical utility of titanium. Of the many strategies employed, surface modification to manipulate surface chemistry and topography has proven to be most effective. Recent evidence suggests that part of the success of these titanium surface modifications may be due to a subsequent modulation of the immune response to decrease inflammation and ensure a timely switch to a more reparative microenvironment. Micro-rough sandblasted and acid etched titanium has been widely used as a model of choice for assessing the effect of topographical surface modification on a variety of bone healing related biological mechanisms. Our group has used this surface and its modifications as a model to study the in vivo and in vitro effects of surface topographical modification on the cellular and molecular mechanisms associated with osseointegration, including the influence on inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindquist LW, Carlsson GE, Jemt T (1996) A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 7(4):329–336

    Article  Google Scholar 

  2. Anderson JM (1988) Inflammatory response to implants. ASAIO Trans 34:101–107

    Article  Google Scholar 

  3. Franz S, Rammelt S, Scharnweber D et al (2011) Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709

    Article  Google Scholar 

  4. Takayanagi H (2005) Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40(4):287–293

    Article  Google Scholar 

  5. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604

    Article  Google Scholar 

  6. Ivanovski S, Hamlet S, Salvi GE et al (2011) Transcriptional profiling of osseointegration in humans. Clin Oral Implants Res 22(4):373–381

    Article  Google Scholar 

  7. Kou PM, Babensee JE (2011) Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A 96(1):239–260

    Article  Google Scholar 

  8. McBane JE, Sharifpoor S, Labow RS et al (2012) Tissue engineering a small diameter vessel substitute: engineering constructs with select biomaterials and cells. Curr Vasc Pharmacol 10(3):347–360

    Article  Google Scholar 

  9. Weidenbusch M, Anders HJ (2012) Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis. J Innate Immun 4(5–6):463–477

    Article  Google Scholar 

  10. Brown B, Badylak SF (2013) Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomaterialia 9:4948–4955

    Article  Google Scholar 

  11. Hezi-Yamit A, Sullivan C, Wong J et al (2009) Impact of polymer hydrophilicity on biocompatibility: implication for DES polymer design. J Biomed Mater Res A 90(1):133–141

    Article  Google Scholar 

  12. Jones JA, Chang DT, Meyerson H et al (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 83(3):585–596

    Article  Google Scholar 

  13. Laschke MW, Harder Y, Amon M et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12(8):2093–2104

    Article  Google Scholar 

  14. Wennerberg A, Albrektsson T (2009) Effect of titanium surface topography on bone integration: a systematic review. Clin Oral Impl Res 20:172–184

    Article  Google Scholar 

  15. Brett PM, Harle J, Salih V et al (2004) Roughness response genes in osteoblasts. Bone 35(1):124–133

    Article  Google Scholar 

  16. Ogawa T, Nishimura I (2003) Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int J Oral Maxillofac Implants 18(2):200–210

    Google Scholar 

  17. Ivanovski S (2010) Osseointegration—the influence of implant surface. Ann R Australas Coll Dent Surg 20:82–85

    Google Scholar 

  18. Abrahamsson I, Berglundh T, Linder E et al (2004) Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res 15(4):381–392

    Article  Google Scholar 

  19. Kieswetter K, Schwartz Z, Hummert TW et al (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32(1):55–63

    Article  Google Scholar 

  20. Cochran DL, Schenk RK, Lussi A et al (1998) Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 40(1):1–11

    Article  Google Scholar 

  21. Cochran DL, Buser D, ten Bruggenkate CM et al (2002) The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res 13(2):144–153

    Article  Google Scholar 

  22. Bornstein MM, Valderrama P, Jones AA et al (2008) Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res 19(3):233–241

    Article  Google Scholar 

  23. Buser D, Broggini N, Wieland M et al (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83(7):529–533

    Article  Google Scholar 

  24. Lang NP, Salvi GE, Huynh-Ba G et al (2011) Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 22(4):349–356

    Article  Google Scholar 

  25. Ferguson SJ, Broggini N, Wieland M et al (2006) Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mater Res A 78(2):291–297

    Article  Google Scholar 

  26. Rausch-fan X, Qu Z, Wieland M et al (2008) Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater 24(1):102–110

    Article  Google Scholar 

  27. Eriksson C, Nygren H, Ohlson K (2004) Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 25(19):4759–4766

    Article  Google Scholar 

  28. Zhao G, Raines AL, Wieland M et al (2007) Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 28(18):2821–2829

    Article  Google Scholar 

  29. Chakravorty N, Hamlet S, Jaiprakash A et al (2014) Pro-osteogenic topographical cues promote early activation of osteoprogenitor differentiation via enhanced TGFbeta, Wnt, and Notch signaling. Clin Oral Implants Res 25(4):475–486

    Article  Google Scholar 

  30. Masaki C, Schneider GB, Zaharias R et al (2005) Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Implants Res 16(6):650–656

    Article  Google Scholar 

  31. Qu Z, Rausch-Fan X, Wieland M et al (2007) The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res A 82(3):658–668

    Article  Google Scholar 

  32. Vlacic-Zischke J, Hamlet SM, Friis T et al (2011) The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFbeta/BMP signalling in osteoblasts. Biomaterials 32(3):665–671

    Article  Google Scholar 

  33. Wall I, Donos N, Carlqvist K et al (2009) Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone 45(1):17–26

    Article  Google Scholar 

  34. Mendonca G, Mendonca DB, Aragao FJ et al (2008) Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials 29(28):3822–3835

    Article  Google Scholar 

  35. Dalby MJ, Gadegaard N, Tare R et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003

    Article  Google Scholar 

  36. Dalby MJ, McCloy D, Robertson M et al (2006) Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27(15):2980–2987

    Article  Google Scholar 

  37. Popat KC, Leoni L, Grimes CA et al (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197

    Article  Google Scholar 

  38. Goene RJ, Testori T, Trisi P (2007) Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae. Int J Periodontics Restorative Dent 27(3):211–219

    Google Scholar 

  39. Orsini G, Piattelli M, Scarano A et al (2007) Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla. J Periodontol 78(2):209–218

    Article  Google Scholar 

  40. Meirelles L, Currie F, Jacobsson M et al (2008) The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Int J Oral Maxillofac Implants 23(4):641–647

    Google Scholar 

  41. Mendes VC, Moineddin R, Davies JE (2009) Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. J Biomed Mater Res A 90(2):577–585

    Article  Google Scholar 

  42. Donos N, Hamlet S, Lang NP et al (2011) Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Implants Res 22(4):365–372

    Article  Google Scholar 

  43. Alfarsi MA, Hamlet SM, Ivanovski S (2014) Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J Biomed Mater Res A 102(1):60–67

    Article  Google Scholar 

  44. Hamlet S, Ivanovski S (2011) Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification. Acta Biomater 7(5):2345–2353

    Article  Google Scholar 

  45. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  Google Scholar 

  46. Taylor PR, Martinez-Pomares L, Stacey M et al (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  Google Scholar 

  47. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  Google Scholar 

  48. Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    Article  Google Scholar 

  49. Mills CD, Kincaid K, Alt JM et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    Article  Google Scholar 

  50. Geissmann F, Gordon S, Hume DA et al (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10(6):453–460

    Article  Google Scholar 

  51. Brown BN, Ratner BD, Goodman SB et al (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802

    Article  Google Scholar 

  52. Underwood RA, Usui ML, Zhao G et al (2011) Quantifying the effect of pore size and surface treatment on epidermal incorporation into percutaneously implanted sphere-templated porous biomaterials in mice. J Biomed Mater Res A 98(4):499–508

    Article  Google Scholar 

  53. Bota PC, Collie AM, Puolakkainen P et al (2010) Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J Biomed Mater Res A 95(2):649–657

    Article  Google Scholar 

  54. Wang Z, Cui Y, Wang J et al (2014) The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35:5700–5710

    Article  Google Scholar 

  55. Hamlet S, Alfarsi M, George R et al (2012) The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin Oral Implants Res 23(5):584–590

    Article  Google Scholar 

  56. Neacsu P, Mazare A, Cimpean A et al (2014) Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int J Biochem Cell Biol 55:187–195

    Article  Google Scholar 

  57. Ma QL, Zhao LZ, Liu RR et al (2014) Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 35(37):9853–9867

    Article  Google Scholar 

  58. Xue J, Schmidt SV, Sander J et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40(2):274–288

    Article  Google Scholar 

  59. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166

    Article  Google Scholar 

  60. Liu Y, Stewart KN, Bishop E et al (2008) Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. J Immunol 180(9):6270–6278

    Article  Google Scholar 

  61. Whyte CS, Bishop ET, Ruckerl D et al (2011) Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J Leukoc Biol 90(5):845–854

    Article  Google Scholar 

  62. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    Article  Google Scholar 

  63. Larsen A, Kolind K, Pedersen DS et al (2008) Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury. Histochem Cell Biol 130(4):681–692

    Article  Google Scholar 

  64. Locht LJ, Larsen A, Stoltenberg M et al (2009) Cultured macrophages cause dissolucytosis of metallic silver. Histol Histopathol 24(2):167–173

    Google Scholar 

  65. Catelas I, Petit A, Zukor DJ et al (2003) TNF-alpha secretion and macrophage mortality induced by cobalt and chromium ions in vitro-qualitative analysis of apoptosis. Biomaterials 24(3):383–391

    Article  Google Scholar 

  66. Saulacic N, Bosshardt DD, Bornstein MM et al (2012) Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. Eur Cell Mater 23:273–286, discussion 286–278

    Google Scholar 

  67. Hallab NJ, Vermes C, Messina C et al (2002) Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res 60(3):420–433

    Article  Google Scholar 

  68. Hotchkiss KM, Ayad NB, Hyzy SL et al (2016) Dental implant surface chemistry and energy alter macrophage activation in vitro. Clin Oral Implants Res. doi:10.1111/clr.12814

    Google Scholar 

  69. Jakobsen SS, Larsen A, Stoltenberg M et al (2007) Effects of as-cast and wrought cobalt-chrome-molybdenum and titanium-aluminium-vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages. Eur Cell Mater 14:45–54, discussion 54–45

    Google Scholar 

  70. Lee S, Choi J, Shin S et al (2011) Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. Acta Biomater 7(5):2337–2344

    Article  Google Scholar 

  71. Refai AK, Textor M, Brunette DM et al (2004) Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A 70(2):194–205

    Article  Google Scholar 

  72. Barth KA, Waterfield JD, Brunette DM (2013) The effect of surface roughness on RAW 264.7 macrophage phenotype. J Biomed Mater Res A 101:2679–2688

    Article  Google Scholar 

  73. Hotchkiss KM, Reddy GB, Hyzy SL et al (2016) Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater 31:425–434

    Article  Google Scholar 

  74. Sridharan R, Cameron AR, Kelly DJ et al (2015) Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today 18(6):313–325

    Article  Google Scholar 

  75. Veiseh O, Doloff JC, Ma M et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651

    Article  Google Scholar 

  76. Luu TU, Gott SC, Woo BW et al (2015) Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl Mater Interfaces 7(51):28665–28672

    Article  Google Scholar 

  77. McWhorter FY, Wang T, Nguyen P et al (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A 110(43):17253–17258

    Article  Google Scholar 

  78. Thompson WR, Rubin CT, Rubin J (2012) Mechanical regulation of signaling pathways in bone. Gene 503(2):179–193

    Article  Google Scholar 

  79. Chen CS, Alonso JL, Ostuni E et al (2003) Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun 307(2):355–361

    Article  Google Scholar 

  80. Waldo SW, Li Y, Buono C et al (2008) Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am J Pathol 172(4):1112–1126

    Article  Google Scholar 

  81. Constantinescu D, Gray HL, Sammak PJ et al (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24(1):177–185

    Article  Google Scholar 

  82. Pajerowski JD, Dahl KN, Zhong FL et al (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A 104(40):15619–15624

    Article  Google Scholar 

  83. Tsimbouri P, Gadegaard N, Burgess K et al (2014) Nanotopographical effects on mesenchymal stem cell morphology and phenotype. J Cell Biochem 115(2):380–390

    Article  Google Scholar 

  84. Tan KS, Qian L, Rosado R et al (2006) The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production. Biomaterials 27(30):5170–5177

    Article  Google Scholar 

  85. Milleret V, Tugulu S, Schlottig F et al (2011) Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation. Eur Cell Mater 21:430–444, discussion 444

    Google Scholar 

  86. Park JW, Kim YJ, Jang JH et al (2013) Positive modulation of osteogenesis- and osteoclastogenesis-related gene expression with strontium-containing microstructured Ti implants in rabbit cancellous bone. J Biomed Mater Res A 101(1):298–306

    Article  Google Scholar 

  87. Lu J, Webster TJ (2015) Reduced immune cell responses on nano and submicron rough titanium. Acta Biomater 16:223–231

    Article  Google Scholar 

  88. Lee CH, Kim YJ, Jang JH et al (2016) Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. Nanotechnology 27(8):085101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saso Ivanovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamlet, S.M., Ivanovski, S. (2017). Inflammatory Cytokine Response to Titanium Surface Chemistry and Topography. In: Corradetti, B. (eds) The Immune Response to Implanted Materials and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-45433-7_8

Download citation

Publish with us

Policies and ethics