Skip to main content

Partial Ordering and Metrology Analyzing Analytical Performance

  • Chapter
  • First Online:
Partial Order Concepts in Applied Sciences

Abstract

Classical measurements of performances are typically based on linear scales. However, in analytical chemistry one scale may be not sufficient to measure items appropriately. However, explorative statistics provide more factors, which all tell their own story about the analytical performance. Partial order methodology offers a possibility to evaluate analytical performance based on data provided, e.g., through method development and thus method optimization. Without presumptions or pretreatment of the data, the performance can be evaluated taking into account all indicators simultaneously and thus elucidating a “distance” from a reference, i.e., a result that is considered as the “best” or “optimal” possibly based on a certified value. In the present study, we elucidate the mutual ranking of the single analytical approaches, i.e., results from different analytical procedures. Initially, a simple approach for evaluating analytical performance is presented followed by more elaborate analyses. The analyses are based on various partial order tools and lead to (1) a partial ordering of the different analytical approaches (2) the “distance” to the reference value and (3) a classification due to the concept of “peculiar points” pin-pointing certain methods that do not fall into the “main-stream”. Additionally, information on the relative importance of the single indicator for the overall performance and a ranking without assuming weights for any single indicator can be obtained. In multi-rule systems incomparabilities appear, i.e., not every analytical result can be compared with another one. Even minor differences in indicator values may lead to incomparabilities. To elucidate these factors a detailed study of incomparabilities based on scanning analyses, tripartite graphs and fuzzy partial orders are presented in order to better understand strengths and weaknesses of the different analytical approaches. Thus, the analyses may lead to detailed recommendations for subsequent improvement. Eventually, the possible use of weight intervals for the single indicators is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • ASTM (2013) Standard practice for verification and use of control charts in spectrochemical analysis, ASTM E1329-10. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Brans JP, Vincke PH, Mareschal B (1986) How to select and how to rank projects: the PROMETHEE method. Eur J Oper Res 24:228–238

    Article  Google Scholar 

  • Bruggemann R, Annoni P (2014) Average heights in partially ordered sets. MATCH Commun Math Comput Chem 71:117–142

    CAS  Google Scholar 

  • Bruggemann R, Carlsen L (eds) (2006a) Partial order in environmental sciences and chemistry. Springer, Berlin

    Google Scholar 

  • Bruggemann R, Carlsen L (2006b) Introduction to partial order theory exemplified by the evaluation of sampling sites. In: Bruggemann R, Carlsen L (eds) Partial order in environmental sciences and chemistry. Springer, Berlin, pp 61–110

    Chapter  Google Scholar 

  • Bruggemann R, Carlsen L (2011) An improved estimation of averaged ranks of partially orders. MATCH Commun Math Comput Chem 65:383–414

    Google Scholar 

  • Bruggemann R, Carlsen L (2012) Multi-criteria decision analyses. Viewing MCDA in terms of both process and aggregation methods: some thoughts, motivated by the paper of Huang, Keisler and Linkov. Sci Total Environ 425:293–295

    Article  CAS  Google Scholar 

  • Bruggemann R, Carlsen L (2014) Incomparable - what now? MATCH Commun Math Comput Chem 71:694–716

    Google Scholar 

  • Bruggemann R, Carlsen L (2015) Incomparable ‐ what now, III. Incomparabilities, elucidated by a simple version of ELECTRE III and a fuzzy, partial order approach. MATCH Commun Math Comput Chem 73:277–302

    Google Scholar 

  • Bruggemann R, Münzer B (1993) A graph-theoretical tool for priority setting of chemicals. Chemosphere 27:1729–1736

    Article  Google Scholar 

  • Bruggemann R, Patil GP (2011) Ranking and prioritization for multi-indicator systems – introduction. Springer, New York

    Book  Google Scholar 

  • Bruggemann R, Voigt K (1995) An evaluation of online databases by methods of lattice theory. Chemosphere 31:3585–3594

    Article  Google Scholar 

  • Bruggemann R, Voigt K (2008) Basic principles of Hasse diagram technique in chemistry. Comb Chem High Throughput Screen 11:756–769

    Article  Google Scholar 

  • Bruggemann R, Voigt K (2011) A new tool to analyze partially ordered sets - application: ranking of polychlorinated biphenyls and alkanes/alkenes in River main, Germany. MATCH Commun Math Comput Chem 66:231–251

    CAS  Google Scholar 

  • Bruggemann R, Sørensen PB, Lerche D, Carlsen L (2004) Estimation of averaged ranks by a local partial order model. J Chem Inf Comput Sci 44:618–625

    Article  Google Scholar 

  • Bruggemann R, Kerber A, Restrepo G (2011) Ranking objects using fuzzy orders, with an application to refrigerants. MATCH Commun Math Comput Chem 66:581–603

    CAS  Google Scholar 

  • Bruggemann R, Restrepo G, Voigt K, Annoni P (2013) Weighting intervals and ranking. Exemplified by leaching potential of pesticides. MATCH Commun Math Comput Chem 69:413–432

    Google Scholar 

  • Bruggemann R, Carlsen L, Voigt K, Wieland R (2014) PyHasse software for partial order analysis. In: Bruggemann R, Carlsen L, Wittmann J (eds) Multi-indicator systems and modelling in partial order. Springer, New York, pp 389–423

    Chapter  Google Scholar 

  • Carlsen L, Bruggemann R (2008) Accumulating partial order ranking. Environ Model Softw 23:986–993

    Article  Google Scholar 

  • Carlsen L, Bruggemann R, Kenessova O, Erzhigitov E (2015) Evaluation of analytical performance based on partial order methodology. Talanta 132:285–293

    Article  CAS  Google Scholar 

  • Colorni A, Paruccini M, Roy B (2001) A-MCD-A, Aide Multi Critere a la Decision, multiple criteria decision aiding. JRC European Commission, Ispra

    Google Scholar 

  • De Loof K, De Meyer H, De Baets B (2006) Exploiting the lattice of ideals representation of a poset. Fundam Inform 71:309–321

    Google Scholar 

  • Ernesti J, Kaiser P (2008) Python - Das umfassende Handbuch. Galileo Press, Bonn

    Google Scholar 

  • Figueira J, Greco S, Ehrgott M (2005) Multiple criteria decision analysis, state of the art surveys. Springer, Boston

    Book  Google Scholar 

  • Gomes LFAM, Rangel LAD (2009) An application of the TODIM method to the multicriteria rental evaluation of residential properties. Eur J Oper Res 193:204–211

    Article  Google Scholar 

  • Hajkowicz S, Higgins A (2008) A comparison of multiple criteria analysis techniques for water resource management. Eur J Oper Res 184(2008):255–265

    Article  Google Scholar 

  • Hetland ML (2005) Beginning Python - from Novice to professional. Apress, Berkeley

    Google Scholar 

  • JCGM 200 (2008) International vocabulary of metrology — basic and general concepts and associated terms (VIM). http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf. Accessed Jan 2015

  • Kosko B (1992) Neural networks and fuzzy systems ‐ a dynamical systems approach to machine learning. Pentice Hall, London

    Google Scholar 

  • Kruse R, Moewes C (2015) Fuzzy systems, Fuzzy set theory., http://fuzzy.cs.uni-magdeburg.de/ci/fs/fs_ch02_fst.pdf. Accessed Jan 2015

    Google Scholar 

  • Lærd (2013) Standard score. https://statistics.laerd.com/statistical-guides/standard-score.php. Accessed Jan 2015

  • Langtangen HP (2008) Python scripting for computational science. Springer, Berlin

    Book  Google Scholar 

  • Lerche D, Sørensen PB, Bruggemann B (2003) Improved estimation of the ranking probabilities in partial orders using random linear extensions by approximation of the mutual ranking probability. J Chem Inf Comput Sci 43:1471–1480

    Article  CAS  Google Scholar 

  • Morton J, Pachter L, Shiu A, Sturmfels B, Wienand O (2009) Convex rank tests and semigraphoids. SIAM J Discrete Math 23:1117–1134

    Article  Google Scholar 

  • Munda G (2008) Social multi-criteria evaluation for a sustainable economy. Springer, Heidelberg

    Book  Google Scholar 

  • Python (2015) Python. https://www.python.org/. Assessed Jan 2015

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/. Accessed Jan 2015. ISBN 3-900051-07-0

  • Roy B (1972) Electre III: Un Algorithme de Classements fonde sur une representation floue des Preferences En Presence de Criteres Multiples. Cahiers du Centre d’Etudes de Recherche Operationelle 20:32–43

    Google Scholar 

  • Roy B (1980) Selektieren, Sortieren und Ordnen mit Hilfe von Prävalenzrelationen: Neue Ansätze auf dem Gebiet der Entscheidungshilfe für Multikriteria-Probleme. zfbf-Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung 32:465–497

    Google Scholar 

  • Roy B (1990) The outranking approach and the foundations of the ELECTRE methods. In: Bana e Costa CD (ed) Readings in multiple criteria decision aid. Springer, Berlin, pp 155–183

    Chapter  Google Scholar 

  • Roy B, Bouyssou D (1986) Comparison of two decision-aid models applied to a nuclear power plant siting example. Eur J Oper Res 25:200–215

    Article  Google Scholar 

  • Stone DC, Ellis J (2009) Aim of statistics in analytical chemistry. Department of Chemistry, University of Toronto. http://www.chem.utoronto.ca/coursenotes/analsci/stats/AimStats.html. Accessed Jan 2015

  • Taylor C (2013) What is Skewness. http://statistics.about.com/od/Descriptive-Statistics/a/What-Is-Skewness.htm. Accessed Jan 2015

  • Van de Walle B, De Baets B, Kersebaum KC (1995) Fuzzy multi‐criteria analysis of cutting techniques in a nuclear dismantling project. Fuzzy Sets Syst 74:115–126

    Article  Google Scholar 

  • Weigend M (2006) Objektorientierte Programmierung mit Python. Mitp, Bonn

    Google Scholar 

  • Wienand O (2006) lcell. http://bio.math.berkeley.edu/ranktests/lcell/. Accessed Jan 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Carlsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Carlsen, L., Bruggemann, R. (2017). Partial Ordering and Metrology Analyzing Analytical Performance. In: Fattore, M., Bruggemann, R. (eds) Partial Order Concepts in Applied Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45421-4_4

Download citation

Publish with us

Policies and ethics