Skip to main content

The Importance of Circulating Tumor Cells and Tumor Models in Future of Cancer Therapy

  • Chapter
  • First Online:
Ex Vivo Engineering of the Tumor Microenvironment

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 797 Accesses

Abstract

Development of new technologies is taking cancer research on a new journey in which plenty of mysterious aspects of cancer biology are being unraveled. To defeat cancer, we first need to understand the biology of this smart complex system, which often hijacks several programs to proliferate, invade, escape the immune system and colonize distant organs. Therefore, studying cancer cells in every step of tumor development (including primary tumor formation, invasion, circulation and metastatic colonization) is absolutely essential. Analysis of human-derived cancer models in primary site, circulation or metastatic lesions outside their host is one of the most promising ways to understand these complexities. The most common currently used and more recently developed cancer cell lines consist of primary patient-derived tumor xenograft (PDTX), circulating tumor cells isolation and analyzes, and primary tumor organoids. In this chapter we provide a brief update of some of the most important advances in studying and treatment of cancer using new technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292. doi:10.1016/j.cell.2011.09.024S0092-8674(11)01085-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342(6159):1234850. doi:10.1126/science.1234850342/6159/1234850

    Article  PubMed  CAS  Google Scholar 

  3. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166(1):21–45. doi:10.1016/j.cell.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  4. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S et al (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22(6):709–724. doi:10.1016/j.ccr.2012.10.012S1535-6108(12)00442-4

    Article  CAS  PubMed  Google Scholar 

  5. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22(6):725–736. doi:10.1016/j.ccr.2012.09.022S1535-6108(12)00400-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brabletz T (2012) To differentiate or not: routes towards metastasis. Nat Rev Cancer 12(6):425–436. doi:10.1038/nrc3265nrc3265

    Article  CAS  PubMed  Google Scholar 

  7. Fazilaty H, Gardaneh M, Bahrami T, Salmaninejad A, Behnam B (2013) Crosstalk between breast cancer stem cells and metastatic niche: emerging molecular metastasis pathway? Tumour Biol 34(4):2019–2030. doi:10.1007/s13277-013-0831-y

    Article  CAS  PubMed  Google Scholar 

  8. Fazilaty H, Behnam B (2014) The perivascular niche governs an autoregulatory network to support breast cancer metastasis. Cell Biol Int 38(6):691–694. doi:10.1002/cbin.10261

    Article  PubMed  Google Scholar 

  9. Fazilaty H, Gardaneh M, Akbari P, Zekri A, Behnam B (2015) SLUG and SOX9 cooperatively regulate tumor initiating niche factors in breast cancer. Cancer Microenviron 9(1):71–74. doi:10.1007/s12307-015-0176-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fazilaty H, Mehdipour P (2014) Genetics of breast cancer bone metastasis: a sequential multistep pattern. Clin Exp Metastasis 31(5):595–612. doi:10.1007/s10585-014-9642-9

    Article  CAS  PubMed  Google Scholar 

  11. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110. doi:10.1038/nrc3447nrc3447

    Article  PubMed  CAS  Google Scholar 

  12. Palucka AK, Coussens LM (2016) The basis of oncoimmunology. Cell 164(6):1233–1247. doi:10.1016/j.cell.2016.01.049

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Bhatia A, Kumar Y (2016) Cancer stem cells and tumor immunoediting: putting two and two together. Expert Rev Clin Immunol 16:1–3 [Epub ahead of print]

    CAS  Google Scholar 

  15. Balic M, Williams A, Lin H, Datar R, Cote RJ (2013) Circulating tumor cells: from bench to bedside. Annu Rev Med 64:31–44. doi:10.1146/annurev-med-050311-163404

    Article  CAS  PubMed  Google Scholar 

  16. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, van Rooijen N, Weissman IL (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138(2):286–299. doi:10.1016/j.cell.2009.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kong F, Gao F, Li H, Liu H, Zhang Y, Zheng R, Zhang Y, Chen J, Li X, Liu G, Jia Y (2016) CD47: a potential immunotherapy target for eliminating cancer cells. Clin Transl Oncol. doi:10.1007/s12094-016-1489-x [Epub ahead of print]

    Google Scholar 

  18. Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw A, Baylot V, Guetegemann I, Eilers M, Felsher DW (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352(6282):227–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, Gilkes DM, He J, Semenza GL (2015) HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci U S A 112(45):E6215–E6223. doi:10.1073/pnas.1520032112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCracken MN, Cha AC, Weissman IL (2015) Molecular pathways: activating T cells after cancer cell phagocytosis from blockade of CD47 “don’t eat me” signals. Clin Cancer Res 21(16):3597–3601. doi:10.1158/1078-0432.CCR-14-2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rivera A, Fu X, Tao L, Zhang X (2015) Expression of mouse CD47 on human cancer cells profoundly increases tumor metastasis in murine models. BMC Cancer 15:964. doi:10.1186/s12885-015-1980-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, Park CY, Zhao F, Kohrt HE, Malumbres R, Briones J, Gascoyne RD, Lossos IS, Levy R, Weissman IL, Majeti R (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142(5):699–713. doi:10.1016/j.cell.2010.07.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, Willingham S, Howard M, Prohaska S, Volkmer J, Chao M, Weissman IL, Majeti R (2015) Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS One 10(9), e0137345. doi:10.1371/journal.pone.0137345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hatherley D, Lea SM, Johnson S, Barclay AN (2013) Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure 21(5):820–832. doi:10.1016/j.str.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD (2006) Regulation of myeloid cell function through the CD200 receptor. J Immunol 176(1):191–199

    Article  CAS  PubMed  Google Scholar 

  26. Kawasaki BT, Farrar WL (2008) Cancer stem cells, CD200 and immunoevasion. Trends Immunol 29(10):464–468. doi:10.1016/j.it.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  27. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 57(7):987–996

    Article  CAS  PubMed  Google Scholar 

  28. Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J (2001) Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57BL/6 mice. Clin Exp Immunol 126(2):220–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL (2007) Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 364(4):778–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS (2008) Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol 180(2):699–705

    Article  CAS  PubMed  Google Scholar 

  31. Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y, Chang AE, Wicha MS (2015) Concise review: targeting cancer stem cells using immunologic approaches. Stem Cells 33(7):2085–2092. doi:10.1002/stem.2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167–1174

    Article  PubMed  CAS  Google Scholar 

  33. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27(5):1006–1020. doi:10.1002/stem.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y, Chen Q (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14(21):6751–6760. doi:10.1158/1078-0432.CCR-08-1034

    Article  CAS  PubMed  Google Scholar 

  35. Jaggupilli A, Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012:708036. doi:10.1155/2012/708036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen S, Song X, Chen Z, Li X, Li M, Liu H, Li J (2013) CD133 expression and the prognosis of colorectal cancer: a systematic review and meta-analysis. PLoS One 8(2), e56380. doi:10.1371/journal.pone.0056380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang J, Li C, Wang Y, Lv H, Guo Y, Dai H, Wicha MS, Chang AE, Li Q (2013) Cytokine-induced killer (CIK) cells bound with anti-CD3/anti-CD133 bispecific antibodies target CD133high cancer stem cells in vitro and in vivo. Clin Immunol 149(1):156–168. doi:10.1016/j.clim.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  38. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11(3):259–273

    Article  CAS  PubMed  Google Scholar 

  39. Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, Junker M, Oefner PJ, Bogdahn U, Wischhusen J, Spang R, Storch A, Beier CP (2010) Transcriptional profiles of CD133+ and CD133 glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res 70(5):2030–2040. doi:10.1158/0008-5472.CAN-09-1707

    Article  CAS  PubMed  Google Scholar 

  40. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402. doi:10.1016/j.stem.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  41. Olver S, Groves P, Buttigieg K, Morris ES, Janas ML, Kelso A, Kienzle N (2006) Tumor-derived interleukin-4 reduces tumor clearance and deviates the cytokine and granzyme profile of tumor-induced CD8+ T cells. Cancer Res 66(1):571–580

    Article  CAS  PubMed  Google Scholar 

  42. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108(5):1435–1440

    Article  CAS  PubMed  Google Scholar 

  43. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  44. Fiebig HH, Neumann HA, Henss H, Koch H, Kaiser D, Arnold H (1985) Development of three human small cell lung cancer models in nude mice. Recent Results Cancer Res 97:77–86

    Article  CAS  PubMed  Google Scholar 

  45. Povlsen CO, Rygaard J (1972) Heterotransplantation of human epidermoid carcinomas to the mouse mutant nude. Acta Pathol Microbiol Scand A 80:713–717

    CAS  PubMed  Google Scholar 

  46. Braakhuis BJ, Sneeuwloper G, Snow GB (1984) The potential of the nude mouse xenograft model for the study of head and neck cancer. Arch Otorhinolaryngol 239:69–79

    Article  CAS  PubMed  Google Scholar 

  47. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, Becker M, Merk J (2008) Establishment of patient- derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 14:6456–6468

    Article  CAS  PubMed  Google Scholar 

  49. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ et al (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17:1514–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, Wong H, Fuqua SW, Contreras A et al (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73:4885–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, Roman-Roman S, Seoane J, Trusolino L et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4:998–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keysar SB, Astling DP, Anderson RT, Vogler BW, Bowles DW, Morton JJ, Paylor JJ, Glogowska MJ, Le PN, Eagles-Soukup JR, Kako SL, Takimoto SM, Sehrt DB et al (2013) A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol Oncol 7:776–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, De Plater L, Gentien D, Poupon MF, Cottu P, De Cremoux P, Gestraud P, Vincent-Salomon A et al (2012) Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res 14:R11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    Article  Google Scholar 

  55. Anscombe FJ (1948) The validity of comparative experiments. J R Stat Soc Ser A 111:181–211

    Article  Google Scholar 

  56. Scheffé H (1999) The analysis of variance. Wiley, New York, NY

    Google Scholar 

  57. Milton F (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701

    Article  Google Scholar 

  58. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974

    Article  CAS  PubMed  Google Scholar 

  59. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564. doi:10.1126/science.1203543331/6024/1559

    Article  CAS  PubMed  Google Scholar 

  60. Broersen LH, van Pelt GW, Tollenaar RA, Mesker WE (2014) Clinical application of circulating tumor cells in breast cancer. Cell Oncol (Dordr) 37(1):9–15. doi:10.1007/s13402-013-0160-6

    Article  CAS  Google Scholar 

  61. Pantel K, Alix-Panabières C (2013) Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 73(21):6384–6388

    Article  CAS  PubMed  Google Scholar 

  62. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428. doi:10.1172/JCI3910439104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bednarz N, Eltze E, Semjonow A, Rink M, Andreas A, Mulder L et al (2010) BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood. Clin Cancer Res 16(13):3340–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yokobori T, Iinuma H, Shimamura T, Imoto S, Sugimachi K, Ishii H et al (2013) Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial–mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res 73(7):2059–2069

    Article  CAS  PubMed  Google Scholar 

  65. Novikov D, Belova T, Plekhanova E, Yanchenko O, Novikov V (2012) Early detection of cancer/testis mRNAs in tumor cells circulating in the peripheral blood of colorectal cancer patients. Mol Biol 46(5):687–692

    Article  CAS  Google Scholar 

  66. Gumireddy K, Li A, Chang DH, Liu Q, Kossenkov AV, Yan J et al (2015) AKAP4 is a circulating biomarker for non-small cell lung cancer. Oncotarget 6(19):17637–17647. doi:10.18632/oncotarget.3946

    Article  PubMed  PubMed Central  Google Scholar 

  67. Behnam B, Chahlavi A, Pattisapu J, Wolfe J (2009) TSGA10 is specifically expressed in astrocyte and over-expressed in brain tumors. Avicenna J Med Biotechnol 1(3):161

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Simpson AJ, Caballero OL, Jungbluth A, Chen Y-T, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5(8):615–625

    Article  CAS  PubMed  Google Scholar 

  69. Behnam B, Conti V, Puliti A, Wolfe J (2006) TSGA10 expression during embryogenesis and neural development in parallel of spermatogenesis and malignancies. Dev Biol 295(1):466

    Article  Google Scholar 

  70. Behnam B, Modarressi MH, Conti V, Taylor KE, Puliti A, Wolfe J (2006) Expression of Tsga10 sperm tail protein in embryogenesis and neural development: from cilium to cell division. Biochem Biophys Res Commun 344(4):1102–1110

    Article  CAS  PubMed  Google Scholar 

  71. Israeli RS, Miller WH, Su SL, Powell CT, Fair WR, Samadi DS et al (1994) Sensitive nested reverse transcription polymerase chain reaction detection of circulating prostatic tumor cells: comparison of prostate-specific membrane antigen and prostate-specific antigen-based assays. Cancer Res 54(24):6306–6310

    CAS  PubMed  Google Scholar 

  72. Bidard F-C, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabières C, Janni W et al (2013) Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev 32(1-2):179–188

    Article  PubMed  Google Scholar 

  73. Mikolajczyk SD, Millar LS, Tsinberg P, Coutts SM, Zomorrodi M, Pham T et al (2011) Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J Oncol 2011:252361. doi:10.1155/2011/252361

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI et al (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16(20):5011–5018. doi:10.1158/1078-0432.CCR-10-11051078-0432.CCR-10-1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Freidin MB, Tay A, Freydina DV, Chudasama D, Nicholson AG, Rice A et al (2014) An assessment of diagnostic performance of a filter-based antibody-independent peripheral blood circulating tumour cell capture paired with cytomorphologic criteria for the diagnosis of cancer. Lung Cancer 85(2):182–185. doi:10.1016/j.lungcan.2014.05.017S0169-5002(14)00245-1

    Article  PubMed  Google Scholar 

  76. Kulemann B, Pitman MB, Liss AS, Valsangkar N, Fernandez-Del Castillo C, Lillemoe KD et al (2015) Circulating tumor cells found in patients with localized and advanced pancreatic cancer. Pancreas 44(4):547–550. doi:10.1097/MPA.0000000000000324

    Article  CAS  PubMed  Google Scholar 

  77. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K et al (2000) Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156(1):57–63. doi:10.1016/S0002-9440(10)64706-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Giorgi V, Pinzani P, Salvianti F, Panelos J, Paglierani M, Janowska A et al (2010) Application of a filtration- and isolation-by-size technique for the detection of circulating tumor cells in cutaneous melanoma. J Invest Dermatol 130(10):2440–2447. doi:10.1038/jid.2010.141jid2010141

    Article  PubMed  CAS  Google Scholar 

  79. Warkiani ME, Khoo BL, Wu L, Tay AK, Bhagat AA, Han J et al (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11(1):134–148. doi:10.1038/nprot.2016.003

    Article  CAS  PubMed  Google Scholar 

  80. Muller V, Stahmann N, Riethdorf S, Rau T, Zabel T, Goetz A et al (2005) Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res 11(10):3678–3685. doi:10.1158/1078-0432.CCR-04-2469

    Article  PubMed  Google Scholar 

  81. Riahi R, Gogoi P, Sepehri S, Zhou Y, Handique K, Godsey J et al (2014) A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer. Int J Oncol 44(6):1870–1878. doi:10.3892/ijo.2014.2353

    PubMed  PubMed Central  Google Scholar 

  82. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259. doi:10.1038/srep01259

    PubMed  PubMed Central  Google Scholar 

  83. Hosseini SA, Abdolahad M, Zanganeh S, Dahmardeh M, Gharooni M, Abiri H et al (2016) Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes. Small 12(7):883–891. doi:10.1002/smll.201502808

    Article  CAS  PubMed  Google Scholar 

  84. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122. doi:10.1016/j.cell.2014.07.013S0092-8674(14)00927-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12(7):685–691. doi:10.1038/nmeth.3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nie FQ, Yamada M, Kobayashi J, Yamato M, Kikuchi A, Okano T (2007) On-chip cell migration assay using microfluidic channels. Biomaterials 28(27):4017–4022. doi:10.1016/j.biomaterials.2007.05.037

    Article  CAS  PubMed  Google Scholar 

  87. Yang K, Han S, Shin Y, Ko E, Kim J, Park KI et al (2013) A microfluidic array for quantitative analysis of human neural stem cell self-renewal and differentiation in three-dimensional hypoxic microenvironment. Biomaterials 34(28):6607–6614. doi:10.1016/j.biomaterials.2013.05.067S0142-9612(13)00659-5

    Article  CAS  PubMed  Google Scholar 

  88. Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275. doi:10.1039/b807585a

    Article  CAS  PubMed  Google Scholar 

  89. Haessler U, Teo JC, Foretay D, Renaud P, Swartz MA (2012) Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr Biol (Camb) 4(4):401–409. doi:10.1039/c1ib00128k

    Article  CAS  Google Scholar 

  90. Liu T, Li C, Li H, Zeng S, Qin J, Lin B (2009) A microfluidic device for characterizing the invasion of cancer cells in 3-D matrix. Electrophoresis 30(24):4285–4291. doi:10.1002/elps.200900289

    Article  CAS  PubMed  Google Scholar 

  91. Song JW, Cavnar SP, Walker AC, Luker KE, Gupta M, Tung YC et al (2009) Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4(6), e5756. doi:10.1371/journal.pone.0005756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL (2013) In vitro model of tumor cell extravasation. PLoS One 8(2), e56910. doi:10.1371/journal.pone.0056910PONE-D-12-35719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kamb A (2005) What’s wrong with our cancer models? Nat Rev Drug Discov 4(2):161–165. doi:10.1038/nrd1635

    Article  CAS  PubMed  Google Scholar 

  94. Masters JR (2000) Human cancer cell lines: fact and fantasy. Nat Rev Mol Cell Biol 1(3):233–236. doi:10.1038/35043102

    Article  CAS  PubMed  Google Scholar 

  95. van Staveren WC, Solis DY, Hebrant A, Detours V, Dumont JE, Maenhaut C (2009) Human cancer cell lines: experimental models for cancer cells in situ? For cancer stem cells? Biochim Biophys Acta 1795(2):92–103. doi:10.1016/j.bbcan.2008.12.004S0304-419X(08)00079-6

    PubMed  Google Scholar 

  96. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338–350. doi:10.1038/nrclinonc.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM et al (2009) A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69(8):3364–3373. doi:10.1158/0008-5472.CAN-08-42100008-5472.CAN-08-4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin K, Teng L, Shen Y, He K, Xu Z, Li G (2010) Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol 12(7):473–480. doi:10.1007/s12094-010-0540-6

    Article  PubMed  Google Scholar 

  99. John T, Kohler D, Pintilie M, Yanagawa N, Pham NA, Li M et al (2011) The ability to form primary tumor xenografts is predictive of increased risk of disease recurrence in early-stage non-small cell lung cancer. Clin Cancer Res 17(1):134–141. doi:10.1158/1078-0432.CCR-10-22241078-0432.CCR-10-2224

    Article  CAS  PubMed  Google Scholar 

  100. Caponigro G, Sellers WR (2011) Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov 10(3):179–187. doi:10.1038/nrd3385nrd3385

    Article  CAS  PubMed  Google Scholar 

  101. Bernards R (2012) A missing link in genotype-directed cancer therapy. Cell 151(3):465–468. doi:10.1016/j.cell.2012.10.014S0092-8674(12)01228-7

    Article  CAS  PubMed  Google Scholar 

  102. Sachs N, Clevers H (2014) Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev 24:68–73. doi:10.1016/j.gde.2013.11.012S0959-437X(13)00161-5

    Article  CAS  PubMed  Google Scholar 

  103. Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T et al (2015) Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A 112(43):13308–13311. doi:10.1073/pnas.15166891121516689112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N et al (2015) Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med 21(11):1364–1371. doi:10.1038/nm.3973nm.3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161(4):933–945. doi:10.1016/j.cell.2015.03.053

    Article  PubMed  CAS  Google Scholar 

  106. Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y et al (2016) Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11(2):347–358. doi:10.1038/nprot.2016.006nprot.2016.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y et al (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21(3):256–262. doi:10.1038/nm.3802

    CAS  PubMed  Google Scholar 

  108. Noman MZ, Messai Y, Muret J, Hasmim M, Chouaib S (2014) Crosstalk between CTC, immune system and hypoxic tumor microenvironment. Cancer Microenviron 7(3):153–160. doi:10.1007/s12307-014-0157-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Behnam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Behnam, B., Fazilaty, H., Roghanian, A. (2017). The Importance of Circulating Tumor Cells and Tumor Models in Future of Cancer Therapy. In: Aref, A., Barbie, D. (eds) Ex Vivo Engineering of the Tumor Microenvironment. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-45397-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45397-2_7

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-45395-8

  • Online ISBN: 978-3-319-45397-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics