Skip to main content

Introduction to Ex Vivo Cancer Models

  • Chapter
  • First Online:
Ex Vivo Engineering of the Tumor Microenvironment

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cancer arises from acquired (and sometimes inherited) genetic changes in cells giving rise to a clonal population of neoplastic cells. However, continued growth of a tumor relies on recruitment and subversion of normal stromal elements [2]. In the cell autonomous view of cancer, a tumor is viewed primarily as a genetic disorder whereby a mutation (or series of mutations or other molecular changes) is sufficient to give rise to the malignant state. Thereafter, signaling transduction pathways become deranged, often in ‘oncogene addicted’ states that promote cell growth. In such states, transcriptional programs are co-opted to promote immortalization, resistance to cell senescence and apoptosis, escape of cell cycle checkpoints, promotion of growth of feeding blood vessels (angiogenesis), and ultimately adoption of an invasive and metastatic phenotype. This ‘reductionist’ view of cancer is in keeping with the original six hallmarks of cancer as detailed by Hanahan and Weinberg in 2000 [1]. This viewpoint is a useful construct and effectively synthesizes decades of groundbreaking research to characterize the impact of oncogenic drivers and tumor suppressor genes in cancer cell biology.

The field of cancer research has largely been guided by a reductionist focus on cancer cells and the genes within them—a focus that has produced an extraordinary body of knowledge. Looking forward in time, we believe that important new inroads will come from regarding tumors as complex tissues in which mutant cancer cells have conscripted and subverted normal cell types to serve as active collaborators in their neoplastic agenda. The interactions between the genetically altered malignant cells and these supporting coconspirators will prove critical to understanding cancer pathogenesis and to the development of novel, effective therapies.—Hanahan and Weinberg, Cell 2000 [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  PubMed  Google Scholar 

  3. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  7. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perez-Callejo D, Gonzalez-Rincon J, Sanchez A, Provencio M, Sanchez-Beato M (2015) Action and resistance of monoclonal CD20 antibodies therapy in B-cell Non-Hodgkin Lymphomas. Cancer Treat Rev 41:680–689

    Article  CAS  PubMed  Google Scholar 

  11. Cameron F, Sanford M (2014) Ibrutinib: first global approval. Drugs 74:263–271

    Article  CAS  PubMed  Google Scholar 

  12. Markham A (2014) Idelalisib: first global approval. Drugs 74:1701–1707

    Article  CAS  PubMed  Google Scholar 

  13. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  CAS  PubMed  Google Scholar 

  14. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334

    Article  CAS  PubMed  Google Scholar 

  15. Marusyk A, Polyak K (1805) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010:105–117

    Google Scholar 

  16. Michor F, Polyak K (2010) The origins and implications of intratumor heterogeneity. Cancer Prev Res (Phila) 3:1361–1364

    Article  Google Scholar 

  17. Tabassum DP, Polyak K (2015) Tumorigenesis: it takes a village. Nat Rev Cancer 15:473–483

    Article  CAS  PubMed  Google Scholar 

  18. Wood KC (2015) Mapping the pathways of resistance to targeted therapies. Cancer Res 75:4247–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K (2014) Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514:54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  CAS  PubMed  Google Scholar 

  21. Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP et al (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209–213

    Article  CAS  PubMed  Google Scholar 

  22. Tissot T, Ujvari B, Solary E, Lassus P, Roche B, Thomas F (1865) Do cell-autonomous and non-cell-autonomous effects drive the structure of tumor ecosystems? Biochim Biophys Acta 2016:147–154

    Google Scholar 

  23. Jouanneau J, Moens G, Bourgeois Y, Poupon MF, Thiery JP (1994) A minority of carcinoma cells producing acidic fibroblast growth factor induces a community effect for tumor progression. Proc Natl Acad Sci U S A 91:286–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W, Shi H et al (2015) Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520:368–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  Google Scholar 

  26. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  CAS  PubMed  Google Scholar 

  27. Masters JR (2000) Human cancer cell lines: fact and fantasy. Nat Rev Mol Cell Biol 1:233–236

    Article  CAS  PubMed  Google Scholar 

  28. Friedman AA, Amzallag A, Pruteanu-Malinici I, Baniya S, Cooper ZA, Piris A et al (2015) Landscape of targeted anti-cancer drug synergies in melanoma identifies a novel BRAF-VEGFR/PDGFR combination treatment. PLoS One 10, e0140310

    Article  PubMed  PubMed Central  Google Scholar 

  29. Friedman AA, Letai A, Fisher DE, Flaherty KT (2015) Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takimoto CH (2001) Why drugs fail: of mice and men revisited. Clin Cancer Res 7:229–230

    CAS  PubMed  Google Scholar 

  32. Talmadge JE, Singh RK, Fidler IJ, Raz A (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Staveren WC, Solis DY, Hebrant A, Detours V, Dumont JE, Maenhaut C (1795) Human cancer cell lines: experimental models for cancer cells in situ? for cancer stem cells? Biochim Biophys Acta 2009:92–103

    Google Scholar 

  35. Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83:249–289

    Article  CAS  PubMed  Google Scholar 

  36. Engelholm SA, Vindelov LL, Spang-Thomsen M, Brunner N, Tommerup N, Nielsen MH et al (1985) Genetic instability of cell lines derived from a single human small cell carcinoma of the lung. Eur J Cancer Clin Oncol 21:815–824

    Article  CAS  PubMed  Google Scholar 

  37. Hausser HJ, Brenner RE (2005) Phenotypic instability of Saos-2 cells in long-term culture. Biochem Biophys Res Commun 333:216–222

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen KV, Madsen MW, Briand P (1994) In vitro karyotype evolution and cytogenetic instability in the non-tumorigenic human breast epithelial cell line HMT-3522. Cancer Genet Cytogenet 78:189–199

    Article  CAS  PubMed  Google Scholar 

  39. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM et al (2009) A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69:3364–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Article  CAS  PubMed  Google Scholar 

  41. Herter-Sprie GS, Kung AL, Wong KK (2013) New cast for a new era: preclinical cancer drug development revisited. J Clin Invest 123:3639–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheon DJ, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol 6:95–119

    Article  CAS  PubMed  Google Scholar 

  43. Jin K, Teng L, Shen Y, He K, Xu Z, Li G (2010) Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol 12:473–480

    Article  PubMed  Google Scholar 

  44. Monsma DJ, Monks NR, Cherba DM, Dylewski D, Eugster E, Jahn H et al (2012) Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. J Transl Med 10:125

    Article  PubMed  PubMed Central  Google Scholar 

  45. Garber K (2009) From human to mouse and back: ‘tumorgraft’ models surge in popularity. J Natl Cancer Inst 101:6–8

    Article  PubMed  Google Scholar 

  46. Cutz JC, Guan J, Bayani J, Yoshimoto M, Xue H, Sutcliffe M et al (2006) Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin Cancer Res 12:4043–4054

    Article  CAS  PubMed  Google Scholar 

  47. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suetsugu A, Katz M, Fleming J, Truty M, Thomas R, Saji S et al (2012) Imageable fluorescent metastasis resulting in transgenic GFP mice orthotopically implanted with human-patient primary pancreatic cancer specimens. Anticancer Res 32:1175–1180

    PubMed  Google Scholar 

  49. Waters DJ, Janovitz EB, Chan TC (1995) Spontaneous metastasis of PC-3 cells in athymic mice after implantation in orthotopic or ectopic microenvironments. Prostate 26:227–234

    Article  CAS  PubMed  Google Scholar 

  50. Day CP, Carter J, Bonomi C, Hollingshead M, Merlino G (2012) Preclinical therapeutic response of residual metastatic disease is distinct from its primary tumor of origin. Int J Cancer 130:190–199

    Article  CAS  PubMed  Google Scholar 

  51. Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  52. Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T et al (2012) A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483:613–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dienstmann R, Jang IS, Bot B, Friend S, Guinney J (2015) Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors. Cancer Discov 5:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10:439–446

    Article  CAS  PubMed  Google Scholar 

  57. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

    Article  CAS  PubMed  Google Scholar 

  59. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y et al (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  61. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  CAS  PubMed  Google Scholar 

  62. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  PubMed  Google Scholar 

  63. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kamb A (2005) What's wrong with our cancer models? Nat Rev Drug Discov 4:161–165

    Article  CAS  PubMed  Google Scholar 

  65. Sachs N, Clevers H (2014) Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev 24:68–73

    Article  CAS  PubMed  Google Scholar 

  66. Kenny HA, Lal-Nag M, White EA, Shen M, Chiang CY, Mitra AK et al (2015) Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat Commun 6:6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D et al (2010) Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci U S A 107:8352–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31:539–544

    Article  CAS  PubMed  Google Scholar 

  69. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F et al (2014) Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 20:897–903

    Article  CAS  PubMed  Google Scholar 

  70. Yu J, Zhou X, Chang M, Nakaya M, Chang JH, Xiao Y et al (2015) Regulation of T-cell activation and migration by the kinase TBK1 during neuroinflammation. Nat Commun 6:6074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D et al (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5:180ra48

    Article  PubMed  Google Scholar 

  72. Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narasimhan H, Dhandapani M et al (2015) Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun 6:6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nagourney RA, Blitzer JB, Shuman RL, Asciuto TJ, Deo EA, Paulsen M et al (2012) Functional profiling to select chemotherapy in untreated, advanced or metastatic non-small cell lung cancer. Anticancer Res 32:4453–4460

    CAS  PubMed  Google Scholar 

  74. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC et al (2014) Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345:216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106:14195–14200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B et al (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suprynowicz FA, Upadhyay G, Krawczyk E, Kramer SC, Hebert JD, Liu X et al (2012) Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc Natl Acad Sci U S A 109:20035–20040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL et al (2014) Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346:1480–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254

    Article  PubMed  Google Scholar 

  80. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–1772

    Article  CAS  PubMed  Google Scholar 

  81. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159:176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–338

    Article  CAS  PubMed  Google Scholar 

  83. Mengelbier LH, Karlsson J, Lindgren D, Valind A, Lilljebjorn H, Jansson C et al (2015) Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer. Nat Commun 6:6125

    Article  CAS  PubMed  Google Scholar 

  84. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354

    Article  CAS  PubMed  Google Scholar 

  85. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    Article  CAS  PubMed  Google Scholar 

  86. Hirt C, Papadimitropoulos A, Mele V, Muraro MG, Mengus C, Iezzi G et al (2014) “In vitro” 3D models of tumor-immune system interaction. Adv Drug Deliv Rev 79–80:145–154

    Article  PubMed  Google Scholar 

  87. Ferrarini M, Steimberg N, Ponzoni M, Belloni D, Berenzi A, Girlanda S et al (2013) Ex-vivo dynamic 3-D culture of human tissues in the RCCS bioreactor allows the study of Multiple Myeloma biology and response to therapy. PLoS One 8, e71613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ekert JE, Johnson K, Strake B, Pardinas J, Jarantow S, Perkinson R et al (2014) Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro—implication for drug development. PLoS One 9, e92248

    Article  PubMed  PubMed Central  Google Scholar 

  89. Feder-Mengus C, Ghosh S, Reschner A, Martin I, Spagnoli GC (2008) New dimensions in tumor immunology: what does 3D culture reveal? Trends Mol Med 14:333–340

    Article  CAS  PubMed  Google Scholar 

  90. Feder-Mengus C, Ghosh S, Weber WP, Wyler S, Zajac P, Terracciano L et al (2007) Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. Br J Cancer 96:1072–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Palucka AK, Coussens LM (2016) The basis of oncoimmunology. Cell 164:1233–1247

    Article  CAS  PubMed  Google Scholar 

  92. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61

    Article  CAS  PubMed  Google Scholar 

  93. Smyth MJ, Ngiow SF, Ribas A, Teng MW (2016) Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13:143–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell W. Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jenkins, R.W. (2017). Introduction to Ex Vivo Cancer Models. In: Aref, A., Barbie, D. (eds) Ex Vivo Engineering of the Tumor Microenvironment. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-45397-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45397-2_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-45395-8

  • Online ISBN: 978-3-319-45397-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics