Skip to main content

Large-Eddy Simulation

  • Chapter
  • First Online:
Computational Fluid Dynamics

Abstract

Let us briefly reexamine the spatial scales present in turbulent flows before discussing how large-eddy simulation can be formulated. Consider the turbulent energy spectra for various turbulent flows across a wide range of Reynolds numbers. Shown in Fig. 8.1 are the energy spectra for various three-dimensional turbulent flows non-dimensionalized by the Kolmogorov scale [4]. Note that the vortices represented with low wave numbers are dependent on the problem. On the other hand, the small vortices represented by the high wave numbers exhibit a universal behavior (independent of the flow field). This is due to the isotropic nature of turbulence near the Kolmogorov scale. Based upon this observation, we can consider modeling the small-scale vortices that possess universality in their behavior and directly resolving the large scale vortices that are influenced by the setup of the flow field. Note however that it would not be appropriate to simply simulate only the large-scale vortices on a coarse grid with the Navier–Stokes equations, because there are interactions amongst vortices over wide range of scale due to the nonlinearity in turbulent flows. Large-eddy simulation (LES) resolves the large-scale vortices in the turbulent flow field and incorporates the influence of small-scale vortices that are not resolved by the grid through a model. This approach taken by LES has been shown to be successful in simulating a variety of complex turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Gaussian profile decays fast but is nonzero over the entire space.

  2. 2.

    For the turbulent stress \(\tau (u,v) = \overline{uv} - \overline{u} ~\overline{v}\) to be Galilean invariant, \(\tau (u+\alpha ,v+\beta ) = \tau (u,v)\) must hold for a system moving at a constant velocity of \((\alpha ,\beta )\). If we let velocity U to be the constant velocity \(\overline{U}\) for \(u^* = u + U\), then we have \(\overline{u^*}= \overline{u}+U\) and \({u^*}' = u'\). Thus the Leonard stress \(L_{ij}\) becomes

    $$\begin{aligned} L_{ij} = \overline{\overline{u^*_i}~\overline{u^*_j}} - \overline{u^*_i}~\overline{u^*_j} - (\overline{\overline{u^*_i}}-\overline{u^*_i})U_j - (\overline{\overline{u^*_j}}-\overline{u^*_j})U_i, \end{aligned}$$

    which is not Galilean invariant since U remains in the expression. The modified \(L^m_{ij}\) on the other hand becomes

    $$\begin{aligned} L^m_{ij} = \overline{\overline{u^*_i}~\overline{u^*_j}} - \overline{\overline{u^*_i}}~\overline{\overline{u^*_j}}, \end{aligned}$$

    which is Galilean invariant.

  3. 3.

    It is often misinterpreted that the sum of the grid-scale and subgrid-scale energy \(k_{GS}+k_{SGS}\) is k. However it should be noted that this sum should be \(\overline{k}\). The kinetic energy distribution from experiments or DNS should be filtered when LES results are compared with such results.

  4. 4.

    The modified pressure here is different from the pressure term \(\overline{P} = \overline{p} + \frac{2}{3}\rho k\) that appears in eddy-viscosity models for RANS but shares similarity in how it combines the isotropic stress components (see Sect. 7.3).

  5. 5.

    Let us derive the interpolation equation for the kinematic (eddy) viscosity coefficient based on how the heat transfer rate is determined for a multispecies interface [23]. Figure 8.10 is provided for reference. Denoting the coefficient at the interface as \(\overline{\nu }\) and evaluating the flux with diffusive gradient, we have

    $$\begin{aligned} \tau = - \overline{\nu } \frac{-u_M + u_P}{\Delta _m + \Delta _p}. \end{aligned}$$

    On the other hand, by assuming that the stress is constant over the segment M to P and the viscosity \(\nu \) is constant inside the cell, we can take the difference across the cell interface to express \(\tau \) as

    $$\begin{aligned} \tau = - \nu _M \frac{- u_M + \overline{u}}{\Delta _m} = -\nu _P \frac{-\overline{u}+u_P}{\Delta _p}. \end{aligned}$$

    Eliminating \(\overline{u}\) in the above equation, we can derive

    $$\begin{aligned} \frac{1}{\overline{\nu }} = \frac{1}{\Delta _m + \Delta _p}\left( \frac{\Delta _m}{\nu _M} + \frac{\Delta _p}{\nu _P} \right) , \end{aligned}$$

    which becomes the harmonic mean when the grid is uniform (\(\Delta _m = \Delta _p\)).

References

  1. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. AIAA Paper 80–1357 (1980)

    Google Scholar 

  2. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Technical Report TF-19, Thermosciences Division, Dept. Mechanical Engineering, Stanford University (1983)

    Google Scholar 

  3. Berselli, L., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Springer (2006)

    Google Scholar 

  4. Chapman, D.R.: Computational aerodynamics development and outlook. AIAA J. 17(12), 1293–1313 (1979)

    Article  MATH  Google Scholar 

  5. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer (2009)

    Google Scholar 

  6. Germano, M.: Differential filters for the large eddy numerical simulation of turbulent flows. Phys. Fluids 29(6), 1755–1757 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Germano, M.: Differential filters of elliptic type. Phys. Fluids 29(6), 1757–1758 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Germano, M.: A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations. Phys. Fluids 29(7), 2323–2324 (1986)

    Article  MATH  Google Scholar 

  9. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  10. Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation. Cambridge Univ. Press (2007)

    Google Scholar 

  12. Kajishima, T., Nomachi, T.: One-equation subgrid scale model using dynamic procedure for the energy production. J. Appl. Mech. 73(3), 368–373 (2006)

    Article  MATH  Google Scholar 

  13. Kajishima, T., Ohta, T., Okazaki, K., Miyake, Y.: High-order finite-difference method for incompressible flows using collocated grid system. JSME Int. J. B 41(4), 830–839 (1998)

    Article  Google Scholar 

  14. Kobayashi, H.: The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 17, 045, 104 (2005)

    Google Scholar 

  15. Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237–248 (1974)

    Article  Google Scholar 

  16. Lesieur, M., Métais, O.: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 45–82 (1996)

    Article  MathSciNet  Google Scholar 

  17. Lesieur, M., Métais, O., Comte, P.: Large-Eddy Simulations of Turbulence. Cambridge Univ. Press (2005)

    Google Scholar 

  18. Lilly, D.K.: The representation of small scale turbulence in numerical simulation experiments. pp. 195–209. IBM Form No. 320–1951 (1967)

    Google Scholar 

  19. Lilly, D.K.: A proposed modification of the Germano subgrid scale closure method. Phys. Fluids A 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  20. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Métais, O., Lesieur, M.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157–194 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Okamoto, M., Shima, N.: Investigation for the one-equation-type subgrid model with eddy-viscosity expression including the shear-damping effect. Trans. Jpn. Soc. Mech. Eng. B 42(2), 154–161 (1999)

    Google Scholar 

  23. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington (1980)

    MATH  Google Scholar 

  24. Piomelli, U., Liu, J.: Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7(4), 839–848 (1995)

    Article  MATH  Google Scholar 

  25. Rodi, W.: Large-eddy simulations of the flow past bluff bodies: state-of-the-art. JSME Int. J. B 41(2), 361–374 (1998)

    Article  MATH  Google Scholar 

  26. Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16, 99–137 (1984)

    Article  MATH  Google Scholar 

  27. Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer (2006)

    Google Scholar 

  28. Salvetti, M.V., Banerjee, S.: A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fluids 7(11), 2831–2847 (1995)

    Article  MATH  Google Scholar 

  29. Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  30. Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  MATH  Google Scholar 

  31. Vreman, B., Geurts, B., Kuerten, H.: On the formulation of the dynamic mixed subgrid-scale model. Phys. Fluids 6(12), 4057–4059 (1994)

    Article  MATH  Google Scholar 

  32. Yoshizawa, A., Horiuti, K.: A statistically-derived subgrid-scale kinetic energy model for the large-eddy simuation of turbulent flows. J. Phys. Soc. Jpn. 54(8), 2834–2839 (1985)

    Article  Google Scholar 

  33. Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5(12), 3186–3196 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takeo Kajishima or Kunihiko Taira .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kajishima, T., Taira, K. (2017). Large-Eddy Simulation. In: Computational Fluid Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-45304-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45304-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45302-6

  • Online ISBN: 978-3-319-45304-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics