Skip to main content

Numerical Simulation of Turbulent Flows

  • Chapter
  • First Online:
Computational Fluid Dynamics

Abstract

Numerical simulations of turbulent flows can be performed to capture (1) the temporal fluctuations and (2) the time-averaged features in the flow field. For example, let us consider a simulated flow through an asymmetric diffuser . The three-dimensional instantaneous flow field obtained from numerically solving the Navier–Stokes equations [36] is shown in Fig. 6.1. The computation captures flow separation and the existence of the recirculation zone in the diffuser. The streamwise velocity profiles from the computation are compared to experimental measurements in Fig. 6.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Additional discussion on dimensional analysis can be found in Problem 6.1.

  2. 2.

    The lowest wave number is determined by the computational domain size and the highest cutoff wave number is determined by grid resolution.

  3. 3.

    See Problem 6.4.

  4. 4.

    The 3D printed model of the vortices around a pitching wing shown in Fig. 1.1 is generated with the Q-value isosurface.

  5. 5.

    Also known as the principal component analysis (PCA) and the Karhunen-Loève expansion.

References

  1. Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to \(Re_\tau = 1020\) with \(Pr = 0.025\) and \(0.71\). J. Heat Fluid Flow 25, 404–419 (2004)

    Google Scholar 

  2. Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decompsotion in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  5. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  6. Chomaz, J.M.: Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(2), 453–480 (1970)

    Article  MATH  Google Scholar 

  8. Delville, J., Ukeiley, L., Cordier, L., Bonnet, J.P., Glauser, M.: Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition. J. Fluid Mech. 391, 91–122 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dimotakis, P.E.: The mixing transition in turbulent flows. J. Fluid Mech. 409, 69–98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eldar, Y.C., Kutyniok, G. (eds.): Compressed Senseing: Theory and Applications. Cambridge Univ. Press (2012)

    Google Scholar 

  11. Gleick, J.: Chaos-Making a New Science. Penguin Books, New York (2008)

    MATH  Google Scholar 

  12. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. Johns Hopkins Univ. Press (1996)

    Google Scholar 

  13. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  14. Hinze, J.O.: Turbulence. McGraw-Hill, New York (1975)

    Google Scholar 

  15. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge Univ. Press (2012)

    Google Scholar 

  16. Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. In: Proceedings of the Summer Program, Center for Turbulence Research, pp. 193–208. Stanford, CA (1988)

    Google Scholar 

  17. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley (2001)

    Google Scholar 

  18. Ilak, M., Rowley, C.W.: Modeling of transitional channel flow using balanced propoer orthogonal decomposition. Phys. Fluids 20, 034,103 (2008)

    Google Scholar 

  19. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jolliffe, I.T.: Principal Component Analysis. Springer (2002)

    Google Scholar 

  21. Jovanovic, M.R., Bamieh, B.: Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26, 024, 103 (2014)

    Google Scholar 

  23. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15(2), L21–24 (2003)

    Article  MATH  Google Scholar 

  24. Kasagi, N., Tomita, Y., Kuroda, A.: Direct numerical simulation of passive scalar field in a turbulent channel flow. J. Heat Transf. 114(3), 598–606 (1992)

    Article  Google Scholar 

  25. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  26. Kobayashi, H.: The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 17, 045, 104 (2005)

    Google Scholar 

  27. Kutz, J.N.: Data-Driven Modeling and Scientific Computation. Oxford Univ. Press (2013)

    Google Scholar 

  28. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  29. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarsky, V.I. (eds.) Atmosphetic Turbulence and Radio Wave Propagation, pp. 166–178. Nauka, Moscow (1967)

    Google Scholar 

  30. Ma, Z., Ahuja, S., Rowley, C.W.: Reduced-order models for control of fluids using the eigensystem realization algorithm. Theo. Comp. Fluid Dyn. 25, 233–247 (2011)

    Article  MATH  Google Scholar 

  31. McKeon, B.J., Sharma, A.S.: A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlin. Dyn. 41, 309–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357–378 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moin, P., Kim, J.: Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–377 (1982)

    Article  MATH  Google Scholar 

  35. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \({R}e_\tau = 590\). Phys. Fluids 11(4), 943–945 (1999)

    Article  MATH  Google Scholar 

  36. Ohta, T., Kajishima, T.: Analysis of non-steady separated turbulent flow in an asymmetric plane diffuser by direct numerial simulations. J. Fluid Sci. Tech. 5(3), 515–527 (2010)

    Article  Google Scholar 

  37. Pope, S.B.: Turbulent Flows. Cambridge Univ. Press (2000)

    Google Scholar 

  38. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bif. Chaos 15(3), 997–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rowley, C.W., Mezić, I., Bagheri, S., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schmid, P.J., Li, L., Juniper, M.P., Pust, O.: Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25, 249–259 (2011)

    Article  MATH  Google Scholar 

  42. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18(4), 376–404 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sirovich, L.: Turbulence and the dynamics of coherent structures, Parts I-III. Q. Appl. Math. XLV, 561–590 (1987)

    Google Scholar 

  44. Speziale, C.G.: Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107–157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. Taira, K., Colonius, T.: Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187–207 (2009)

    Article  MATH  Google Scholar 

  46. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aero. Sci. 39, 249–315 (2003)

    Article  Google Scholar 

  47. Theofilis, V.: Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM (1997)

    Google Scholar 

  49. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ukeiley, L., Cordier, L., Manceau, R., Delville, J., Glauser, M., Bonnet, J.P.: Examinatino of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model. J. Fluid Mech. 441, 67–108 (2001)

    Article  MATH  Google Scholar 

  51. Yakhot, V., Orszag, S.A.: Renormalization group analysis of turbulence. I. Basic Theory. J. Sci. Comput. 1(1), 3–51 (1986)

    MathSciNet  MATH  Google Scholar 

  52. Yoshizawa, A.: Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys. Fluids 27(6), 1377–1387 (1984)

    Article  MATH  Google Scholar 

  53. Yoshizawa, A.: Derivation of a model Reynolds-stress transport equation using the renormalization of the eddy-viscosity-type representation. Phys. Fluids A 5(3), 707–715 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takeo Kajishima or Kunihiko Taira .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kajishima, T., Taira, K. (2017). Numerical Simulation of Turbulent Flows. In: Computational Fluid Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-45304-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45304-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45302-6

  • Online ISBN: 978-3-319-45304-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics