Skip to main content

Immersed Boundary Methods

  • Chapter
  • First Online:
Computational Fluid Dynamics

Abstract

Analysis of flow over bodies with complex surface geometry can pose a challenge in terms of spatial discretization. Creating a high quality boundary fitted mesh can not only be difficult but also time consuming especially when there are complex flow structures over intricate boundary geometry that need to be resolved in the simulations. This is especially true for bodies encountered in engineering applications such as fluid flow around an automotive engine and undercarriage as well as aircraft landing gears. Furthermore, if we have problems involving fluid-structure interaction, the location of the moving or deforming interface needs to be determined numerically. In such cases, the need to re-mesh the flow field around the body at every time step can introduce an added computational burden. Similar situation arises when one attempts to simulate particle-laden flows in which the interface between different phases needs to be tracked and resolved accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a collocated spatial discretization, a stronger requirement of \(\sum _{i=\text {odd}} d(x/\Delta s - i) = \sum _{i=\text {even}} d(x/\Delta s - i)= 1/2\) is imposed to avoid checkerboard oscillation from naively transmitting the boundary force onto the Eulerian grid.

  2. 2.

    The exponential form of the discrete delta function is infinitely continuous which is useful for spectral methods to avoid the introduction of spatial oscillations.

  3. 3.

    The translational invariance would need a stronger statement of \(\sum _{i} d(x_1/\Delta s - i) d(x_2/\Delta s - i) = \text {fnc}(x_1/\Delta s-x_2/\Delta s)\) for all x.

  4. 4.

    The discrete Navier–Stokes equations can be formulated as a Karush–Kuhn–Tucker (KKT) system [25, 35] (see: Eqs. (3.26) and (5.45) with \(D = -G^{T}\)).

  5. 5.

    In Fadlun et al. [9], the third-order Runge–Kutta method is used.

References

  1. Bagheri, S., Mazzino, A., Bottaro, A.: Spontaneous symmetry breaking of a hinged flapping filament generates lift. Phys. Rev. Let. 109(15), 154,502 (2012)

    Google Scholar 

  2. Belov, A., Martinelli, L., Jameson, A.: A new implicit algorithm with multigrid for unsteady incompressible flow calculations. AIAA Paper 95-0049 (1995)

    Google Scholar 

  3. Beyer, R.P., LeVeque, R.J.: Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 29(2), 332–364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Briscolini, M., Santangelo, P.: Development of the mast method for incompressible unsteady flows. J. Comput. Phys. 84, 57–75 (1989)

    Article  MATH  Google Scholar 

  5. Chang, W., Giraldo, F., Perot, B.: Analysis of an exact fractional step method. J. Comput. Phys. 180, 183–199 (2002)

    Article  MATH  Google Scholar 

  6. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2(1), 12–26 (1969)

    Article  MATH  Google Scholar 

  7. Coutanceau, M., Bouard, R.: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech. 79(2), 231–256 (1977)

    Article  Google Scholar 

  8. Dennis, S.C.R., Chang, G.: Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100. J. Fluid Mech. 42(3), 471–489 (1970)

    Article  MATH  Google Scholar 

  9. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukuoka, H., Takeuchi, S., Kajishima, T.: Interaction between fluid and flexible membrane structures by a new fixed-grid direct forcing method. In: AIP conference proceedings, vol. 1702, p. 190014 (2015)

    Google Scholar 

  11. Ghias, R., Mittal, R., Dong, H.: A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225, 528–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105, 354 (1993)

    Article  MATH  Google Scholar 

  13. Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. App. Mech. Rev. 56(3), 331–347 (2003)

    Article  Google Scholar 

  14. Ikeno, T., Kajishima, T.: Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations. J. Comput. Phys. 226, 1485–1508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kajishima, T., Nomachi, T.: One-equation subgrid scale model using dynamic procedure for the energy production. J. Appl. Mech. 73(3), 368–373 (2006)

    Article  MATH  Google Scholar 

  16. Karagiozis, K., Kamakoti, R., Pantano, C.: A low numerical dissipation immersed interface method for the compressible Navier-Stokes equations. J. Comput. Phys. 229, 701–727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lācis, U., Taira, K., Bagheri, S.: A stable fluid-structure-interaction solver for low-density rigid bodies using the immersed boundary projection method. J. Comput. Phys. 305, 300–318 (2016)

    Article  MathSciNet  Google Scholar 

  18. Lai, M.C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerial viscosity. J. Comput. Phys. 160, 705–719 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, C.: Stability characteristics of the virtual boundary method in three-dimensional applications. J. Comput. Phys. 183, 559–591 (2003)

    Article  MATH  Google Scholar 

  20. Li, X., Hunt, M.L., Colonius, T.: A contact model for normal immersed collisions between a particle and a wall. J. Fluid Mech. 691, 123–145 (2012)

    Article  MATH  Google Scholar 

  21. Linnick, M.N., Fasel, H.F.: A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. Comput. Phys. 204, 157–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, C., Zheng, X., Sung, C.H.: Preconditioned multigrid methods for unsteady incompressible flows. J. Comput. Phys. 139, 35–57 (1998)

    Article  MATH  Google Scholar 

  23. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mohd-Yusof, J.: Development of immersed boundary methods for complex geometries. pp. 325–336. Annual Research Brief, Center for Turbulence Research, Stanford, CA (1998)

    Google Scholar 

  25. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (1999)

    Google Scholar 

  26. Perot, J.B.: An analysis of the fractional step method. J. Comput. Phys. 108, 51–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roma, A.M., Peskin, C.S., Berger, M.J.: An adaptive version of the immersed boundary method. J. Comput. Phys. 153, 509–534 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Roshko, A.: On the development of turbulent wakes from vortex streets. Tech. Rep. 1191, NACA (1954)

    Google Scholar 

  32. Saiki, E.M., Biringen, S.: Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J. Comput. Phys. 123, 450–465 (1996)

    Article  MATH  Google Scholar 

  33. Sato, N., Takeuchi, S., Kajishima, T., Inagaki, M., Horinouchi, N.: A consistent direct discretization scheme on Cartesian grids for convective and conjugate heat transfer. J. Comput. Phys. 321, 76–104 (2016)

    Article  MathSciNet  Google Scholar 

  34. Stockie, J.M.: Analysis and computation of immersed boundaries, with application to pulp fibres. Ph.D. thesis, Univ. British Columbia (1997)

    Google Scholar 

  35. Taira, K., Colonius, T.: The immersed boundary method: a projection approach. J. Comput. Phys. 225, 2118–2137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tornberg, A.K., Engquist, B.: Numerical approximation of singular source terms in differential equations. J. Comput. Phys. 200, 462–488 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tritton, D.J.: Experiments on the flow past a circular cylinder at low Reynolds number. J. Fluid Mech. 6, 547–567 (1959)

    Article  MATH  Google Scholar 

  38. Udaykumar, H.S., Mittal, R., Rampunggoon, P., Khanna, A.: A sharp interface cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174, 345–380 (2001)

    Article  MATH  Google Scholar 

  39. Ye, T., Mittal, R., Udaykumar, H.S., Shyy, W.: An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156, 209–240 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takeo Kajishima or Kunihiko Taira .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kajishima, T., Taira, K. (2017). Immersed Boundary Methods. In: Computational Fluid Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-45304-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45304-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45302-6

  • Online ISBN: 978-3-319-45304-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics