Skip to main content

Abstract

The first reports on photodynamic therapy (PDT) date back to the beginning of the last century, when researchers observed that a combination of light and certain chemicals could induce cell death. Significant efforts have been invested in the development of sensitizers to optimize the treatment since the photosensitizer is considered a critical element in PDT and should therefore at least meet some of the following criteria that are clinically relevant. Lots of sensitizers selectively localize within a tumor due to physiological differences in the tumor and healthy tissue; rather long-wavelength absorbing photosensitizers are preferentially used in oncologic PDT. The disadvantage of topical PDT in oncology is a limited penetration of the photosensitizer until few millimeters. Therefore mainly superficial tumors needing treatment up to 1 cm depth are amenable to PDT, with the exception being interstitial PDT or a combination of PDT with prior debulking surgery. In addition to the photodynamic therapeutic effect that occurs after light administration, photosensitizers can also be used diagnostically since many of these substances induce fluorescence. It is likely that PDT will continue to be used as both a solitary treatment modality and in combination with other strategies, such as hyperthermia and photodynamic therapy-generated vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moor ACE, Ortel B, Hasan T. Mechanisms of photodynamic therapy. In: Photodynamic therapy. Cambridge: Royal Society of Chemistry; 2003. p. 19–58.

    Google Scholar 

  2. Moan J, Peng Q. An outline of the history of PDT. In: Patrice T, editor. Photodynamic therapy. Cambridge: Royal Society of Chemistry; 2003. p. 1–18.

    Chapter  Google Scholar 

  3. Jori G, Reddi E. The role of lipoproteins in the delivery of tumour-targeting photosensitizers. Int J Biochem. 1993;25(10):1369–75.

    Article  CAS  PubMed  Google Scholar 

  4. Korbelik M. Low density lipoprotein receptor pathway in the delivery of Photofrin: how much is it relevant for selective accumulation of the photosensitizer in tumors? J Photochem Photobiol B. 1992;12(1):107–9.

    Article  CAS  PubMed  Google Scholar 

  5. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol. 1992;55(1):145–57.

    Article  CAS  PubMed  Google Scholar 

  6. Jori G. Tumour photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy. J Photochem Photobiol B Biol. 1996;36(2):87–93.

    Article  CAS  Google Scholar 

  7. Buchholz J, Kaser-Hotz B, Khan T, Rohrer Bley C, Melzer K, Schwendener RA, et al. Optimizing photodynamic therapy: in vivo pharmacokinetics of liposomal meta-(tetrahydroxyphenyl)chlorin in feline squamous cell carcinoma. Clin Cancer Res. 2005;11(20):7538–44.

    Article  CAS  PubMed  Google Scholar 

  8. Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev. 1995;24(1):19.

    Article  CAS  Google Scholar 

  9. Frei KA, Bonel HM, Frick H, Walt H, Steiner RA. Photodynamic detection of diseased axillary sentinel lymph node after oral application of aminolevulinic acid in patients with breast cancer. Br J Cancer. 2004;90(4):805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelty CJ, Brown NJ, Reed MWR, Ackroyd R. The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. Photochem Photobiol Sci. 2002;1(3):158–68.

    Article  CAS  PubMed  Google Scholar 

  11. Knapp DW, Adams LG, Degrand AM, Niles JD, Ramos-Vara JA, Weil AB, et al. Sentinel lymph node mapping of invasive urinary bladder cancer in animal models using invisible light. Eur Urol. 2007;52(6):1700–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ormond A, Freeman H. Dye sensitizers for photodynamic therapy. Materials (Basel). 2013;6(3):817–40.

    Article  CAS  Google Scholar 

  13. Dougherty TJ. An update on photodynamic therapy applications. J Clin Laser Med Surg. 2002;20(1):3–7.

    Article  PubMed  Google Scholar 

  14. Hillemanns P, Einstein MH, Iversen OE. Topical hexaminolevulinate photodynamic therapy for the treatment of persistent human papilloma virus infections and cervical intraepithelial neoplasia. Expert Opin Investig Drugs. 2015;24(2):273–81.

    Article  CAS  PubMed  Google Scholar 

  15. Helgesen ALO, Warloe T, Pripp AH, Kirschner R, Peng Q, Tanbo T, et al. Vulvovaginal photodynamic therapy vs. topical corticosteroids in genital erosive lichen planus: a randomized controlled trial. Br J Dermatol. 2015;173(5):1156–62.

    Article  CAS  PubMed  Google Scholar 

  16. Fingar VH, Kik PK, Haydon PS, Cerrito PB, Tseng M, Abang E, et al. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br J Cancer. 1999;79(11–12):1702–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lui H, Hobbs L, Tope WD, Lee PK, Elmets C, Provost N, et al. Photodynamic therapy of multiple nonmelanoma skin cancers with verteporfin and red light-emitting diodes: two-year results evaluating tumor response and cosmetic outcomes. Arch Dermatol. 2004;140(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  18. Rousset N, Bourre L, Thibaud S. Sensitizers in photodynamic therapy. In: Thierry P, Royal Society of Chemistry, editors. Photodynamic therapy. Cambridge: Royal Society of Chemistry; 2003.

    Google Scholar 

  19. Triesscheijn M, Ruevekamp M, Aalders M, Baas P, Stewart FA. Outcome of mTHPC mediated photodynamic therapy is primarily determined by the vascular response. Photochem Photobiol. 2006;81(5):1161–7.

    Article  Google Scholar 

  20. O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009;85(5):1053–74.

    Article  PubMed  Google Scholar 

  21. Zimcik P, Miletin M. Photodynamic therapy. In: Lang A, editor. Dyes and pigments: new research. New York: Nova; 2008.

    Google Scholar 

  22. Huang Z, Chen Q, Luck D, Beckers J, Wilson BC, Trncic N, et al. Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer. Lasers Surg Med. 2005;36(5):390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat. 2005;4(3):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmidt MH, Bajic DM, Reichert KW, Martin TS, Meyer GA, Whelan HT. Light-emitting diodes as a light source for intraoperative photodynamic therapy. Neurosurgery. 1996;38(3):552–6; discussion 556–7.

    CAS  PubMed  Google Scholar 

  25. Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, et al. New technology for deep light distribution in tissue for phototherapy. Cancer J. 2002;8(2):154–63.

    Article  PubMed  Google Scholar 

  26. Juzeniene A, Juzenas P, Ma L-W, Iani V, Moan J. Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers Med Sci. 2004;19(3):139–49.

    Article  PubMed  Google Scholar 

  27. Khan T, Unternährer M, Buchholz J, Kaser-Hotz B, Selm B, Rothmaier M, et al. Performance of a contact textile-based light diffuser for photodynamic therapy. Photodiagnosis Photodyn Ther. 2006;3(1):51–60.

    Article  PubMed  Google Scholar 

  28. Selm B, Rothmaier M, Camenzind M, Khan T, Walt H. Novel flexible light diffuser and irradiation properties for photodynamic therapy. J Biomed Opt. 2007;12(3):034024.

    Article  PubMed  Google Scholar 

  29. Buchholz J, Kaser-Hotz B. Kombination von photodynamischer Therapie und Hyperthermie mit wassergefiltertem Infrarotlicht zur Behandlung kutaner Plattenepithelkarzinome bei 15 Katzen: Eine Pilotstudie. Kleintierpraxis. 2010;50:248–54.

    Google Scholar 

  30. Korbelik M, Stott B, Sun J. Photodynamic therapy-generated vaccines: relevance of tumour cell death expression. Br J Cancer. 2007;97(10):1381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kelleher DK, Bastian J, Thews O, Vaupel P. Enhanced effects of aminolaevulinic acid-based photodynamic therapy through local hyperthermia in rat tumours. Br J Cancer. 2003;89(2):405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Onoyama M, Tsuka T, Imagawa T, Osaki T, Minami S, Azuma K, et al. Photodynamic hyperthermal chemotherapy with indocyanine green: a novel cancer therapy for 16 cases of malignant soft tissue sarcoma. J Vet Sci. 2014;15(1):117–23.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gollnick SO, Vaughan L, Henderson BW. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res. 2002;62(6):1604–8.

    CAS  PubMed  Google Scholar 

  34. Korbelik M, Sun J. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol Immunother. 2006;55(8):900–9.

    Article  CAS  PubMed  Google Scholar 

  35. Korbelik M, Cooper PD. Potentiation of photodynamic therapy of cancer by complement: the effect of gamma-inulin. Br J Cancer. 2007;96(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  36. Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG. Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst. 1975;55(1):115–21.

    Article  CAS  PubMed  Google Scholar 

  37. Lucroy MD. Photodynamic therapy for companion animals with cancer. Vet Clin North Am Small Anim Pract. 2002;32(3):693–702, viii.

    Article  PubMed  Google Scholar 

  38. Buchholz J, Walt H. Veterinary photodynamic therapy: a review. Photodiagnosis Photodyn Ther. 2013;10(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  39. Magne ML, Rodriguez CO, Autry SA, Edwards BF, Theon AP, Madewell BR. Photodynamic therapy of facial squamous cell carcinoma in cats using a new photosensitizer. Lasers Surg Med. 1997;20(2):202–9.

    Article  CAS  PubMed  Google Scholar 

  40. McCaw DL, Pope ER, Payne JT, West MK, Tompson RV, Tate D, et al. Treatment of canine oral squamous cell carcinomas with photodynamic therapy. Br J Cancer. 2000;82(7):1297–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCaw DL, Payne JT, Pope ER, West MK, Tompson RV, Tate D. Treatment of canine hemangiopericytomas with photodynamic therapy. Lasers Surg Med. 2001;29(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  42. Hahn K, Panjehpour M, Legendre AM. Photodynamic therapy response in cats with cutaneous squamous cell carcinoma as a function of fluence. Vet Dermatol. 1998;9:3–7.

    Article  Google Scholar 

  43. Buchholz J, Walt H, Fidel J, Al E. Photodynamische Therapie beim felinen Plattenepithelkarzinom sowie bei versch. kaninen Tumoren. Kleintierpraxis. 2003;48:405–18.

    Google Scholar 

  44. Buchholz J, Wergin M, Walt H, Gräfe S, Rohrer Bley C, Kaser-Hotz B. Photodynamic therapy of feline cutaneous squamous cell carcinoma using a newly developed liposomal photosensitizer: preliminary results concerning drug safety and efficacy. J Vet Intern Med. 2007;21(4):770.

    Article  PubMed  Google Scholar 

  45. Borgatti-Jeffreys A, Hooser SB, Miller MA, Lucroy MD. Phase I clinical trial of the use of zinc phthalocyanine tetrasulfonate as a photosensitizer for photodynamic therapy in dogs. Am J Vet Res. 2007;68(4):399–404.

    Article  CAS  PubMed  Google Scholar 

  46. Chang SC, Buonaccorsi G, MacRobert A, Bown SG. Interstitial and transurethral photodynamic therapy of the canine prostate using meso-tetra-(m-hydroxyphenyl) chlorin. Int J Cancer. 1996;67(4):555–62.

    Article  CAS  PubMed  Google Scholar 

  47. Chang SC, Chern IF, Hsu YH. Biological responses of dog prostate and adjacent structures after meso-tetra-(m-hydroxyphenyl) chlorin and aluminum disulfonated phthalocyanine based photodynamic therapy. Proc Natl Sci Counc Repub China B. 1999;23(4):158–66.

    CAS  PubMed  Google Scholar 

  48. Nseyo UO, DeHaven J, Dougherty TJ, Potter WR, Merrill DL, Lundahl SL, et al. Photodynamic therapy (PDT) in the treatment of patients with resistant superficial bladder cancer: a long-term experience. J Clin Laser Med Surg. 1998;16(1):61–8.

    CAS  PubMed  Google Scholar 

  49. Anderson TM, Dougherty TJ, Tan D, Sumlin A, Schlossin JM, Kanter PM. Photodynamic therapy for sarcoma pulmonary metastases: a preclinical toxicity study. Anticancer Res. 2003;23(5A):3713–8.

    CAS  PubMed  Google Scholar 

  50. Gloi AM, Beck E. Threshold dose of three photosensitizers in dogs with spontaneous tumors. Vet Ther. 2003;4(3):269–78.

    PubMed  Google Scholar 

  51. Gloi AM, Beck E. Evaluation of porfimer sodium in dogs and cats with spontaneous tumors. Vet Ther. 2004;5(1):26–33.

    PubMed  Google Scholar 

  52. Du KL, Mick R, Busch TM, Zhu TC, Finlay JC, Yu G, et al. Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer. Lasers Surg Med. 2006;38(5):427–34.

    Article  CAS  PubMed  Google Scholar 

  53. Ross HM, Smelstoys JA, Davis GJ, Kapatkin AS, Del Piero F, Reineke E, et al. Photodynamic therapy with motexafin lutetium for rectal cancer: a preclinical model in the dog. J Surg Res. 2006;135(2):323–30.

    Article  CAS  PubMed  Google Scholar 

  54. Osaki T, Hoshino S, Hoshino Y, Takagi S, Okumura M, Kadosawa T, et al. Clinical pharmacokinetics of anti-angiogenic photodynamic therapy with benzoporphyrin derivative monoacid ring-a in dogs having naturally occurring neoplasms. J Vet Med A Physiol Pathol Clin Med. 2006;53(2):108–12.

    Article  CAS  PubMed  Google Scholar 

  55. Xiao Z, Dickey D, Owen RJ, Tulip J, Moore R. Interstitial photodynamic therapy of the canine prostate using intra-arterial administration of photosensitizer and computerized pulsed light delivery. J Urol. 2007;178(1):308–13.

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Ma XQ, Jin P, Li HT, Zhang RR, Ren XL, et al. Apoptosis induced by hematoporphyrin monomethyl ether combined with He-Ne laser irradiation in vitro on canine breast cancer cells. Vet J. 2011;188(3):325–30.

    Article  CAS  PubMed  Google Scholar 

  57. Li HT, Song XY, Yang C, Li Q, Tang D, Tian WR, et al. Effect of hematoporphyrin monomethyl ether-mediated PDT on the mitochondria of canine breast cancer cells. Photodiagnosis Photodyn Ther. 2013;10(4):414–21.

    Article  CAS  PubMed  Google Scholar 

  58. Rocha MST, Lucci CM, Longo JPF, Galera PD, Simioni AR, Lacava ZGM, et al. Aluminum-chloride-phthalocyanine encapsulated in liposomes: activity against naturally occurring dog breast cancer cells. J Biomed Nanotechnol. 2012;8(2):251–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lin N, Li C, Wang Z, Zhang J, Ye X, Gao W, et al. A safety study of a novel photosensitizer, sinoporphyrin sodium, for photodynamic therapy in Beagle dogs. Photochem Photobiol Sci. 2015;14(4):815–32.

    Article  CAS  PubMed  Google Scholar 

  60. Lucroy MD, Edwards BF, Peavy GM, Krasieva TB, Griffey SM, Stiles JB, et al. Preclinical study in cats of the pro-photosensitizer 5-aminolevulinic acid. Am J Vet Res. 1999;60(11):1364–70.

    CAS  PubMed  Google Scholar 

  61. Ridgway TD, Lucroy MD. Phototoxic effects of 635-nm light on canine transitional cell carcinoma cells incubated with 5-aminolevulinic acid. Am J Vet Res. 2003;64(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  62. Lucroy MD, Ridgway TD, Peavy GM, Krasieva TB, Higbee RG, Campbell GA, et al. Preclinical evaluation of 5-aminolevulinic acid-based photodynamic therapy for canine transitional cell carcinoma. Vet Comp Oncol. 2003;1(2):76–85.

    Article  CAS  PubMed  Google Scholar 

  63. Huang Z, Chen Q, Trncic N, LaRue SM, Brun P-H, Wilson BC, et al. Effects of Pd-bacteriopheophorbide (TOOKAD)-mediated photodynamic therapy on canine prostate pretreated with ionizing radiation. Radiat Res. 2004;161(6):723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. L’eplattenier HF, Klem B, Teske E, van Sluijs FJ, van Nimwegen SA, Kirpensteijn J. Preliminary results of intraoperative photodynamic therapy with 5-aminolevulinic acid in dogs with prostate carcinoma. Vet J. 2008;178(2):202–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Buchholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buchholz, J. (2016). Basic Studies in Cancer PDT. In: Sellera, F., Nascimento, C., Ribeiro, M. (eds) Photodynamic Therapy in Veterinary Medicine: From Basics to Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-45007-0_9

Download citation

Publish with us

Policies and ethics