Skip to main content

Abstract

PDT requires a multimodality approach for dosimetry because it works based on three essential components: light, photosensitizer, and molecular oxygen. Since these components are found in variable amounts inside target cells, PDT dosimetry is rather intricate. This chapter intends to address, with little mathematical complexity, the physical and chemical quantities that are most relevant for light and photosensitizer dosimetry as well as to present basic aspects of oxygen supply to achieve successful PDT interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prates RA, da Silva EG, Yamada Jr AM, Suzuki LC, Paula CR, Ribeiro MS. Light parameters influence cell viability in antifungal photodynamic therapy in a fluence and rate fluence-dependent manner. Laser Phys. 2009;19(5):1038–44.

    Article  CAS  Google Scholar 

  2. Castronuovo G, Fava G, Giavelli S. The skin role during a low level laser therapy. Lasers applications in medicine. Bologna: Monduzzi; 1992. p. 19–24.

    Google Scholar 

  3. Dai T, Gupta A, Huang YY, Sherwood ME, Murray CK, Vrahas MS, et al. Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg. 2013;31(11):531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Zhu Y, Gupta A, Huang Y, Murray CK, Vrahas MS, et al. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J Infect Dis. 2014;209(12):1963–71.

    Article  CAS  PubMed  Google Scholar 

  5. Arenas Y, Monro S, Shi G, Mandel A, McFarland S, Lilge L. Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Photodiagnosis Photodyn Ther. 2013;10(4):615–25.

    Article  CAS  PubMed  Google Scholar 

  6. Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother. 2006;57(4):680–4.

    Article  CAS  PubMed  Google Scholar 

  7. Enk CD, Nasereddin A, Alper R, Dan-Goor M, Jaffe CL, Wulf HC. Cutaneous leishmaniasis responds to daylight-activated photodynamic therapy: proof of concept for a novel self-administered therapeutic modality. Br J Dermatol. 2015;172(5):1364–70.

    Article  CAS  PubMed  Google Scholar 

  8. Hetzel F, Patterson M, Preuss L, Wilson B. Recommended nomenclature for physical quantities in medical applications of light. In: (AAPM) AAOPiM, editor. American Institute of Physics; Woodbury, NY, USA; 1996.

    Google Scholar 

  9. Sliney DH, Illumination ICo. Radiometric quantities and units used in photobiology and photochemistry: recommendations of the Commission Internationale de L’Eclairage (International Commission on Illumination). Photochem Photobiol. 2007;83(2):425–32.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53(9):R61–109.

    Article  CAS  PubMed  Google Scholar 

  11. Boere IA, Robinson DJ, de Bruijn HS, Kluin J, Tilanus HW, Sterenborg HJ, et al. Protoporphyrin IX fluorescence photobleaching and the response of rat Barrett’s esophagus following 5-aminolevulinic acid photodynamic therapy. Photochem Photobiol. 2006;82(6):1638–44.

    Article  CAS  PubMed  Google Scholar 

  12. Usacheva MN, Teichert MC, Biel MA. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J Photochem Photobiol B. 2003;71(1–3):87–98.

    Article  CAS  PubMed  Google Scholar 

  13. Andrade MC, Ribeiro AP, Dovigo LN, Brunetti IL, Giampaolo ET, Bagnato VS, et al. Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol. 2013;58(2):200–10.

    Article  CAS  PubMed  Google Scholar 

  14. Pogue BW, O’Hara JA, Goodwin IA, Wilmot CJ, Fournier GP, Akay AR, et al. Tumor PO(2) changes during photodynamic therapy depend upon photosensitizer type and time after injection. Comp Biochem Physiol A Mol Integr Physiol. 2002;132(1):177–84.

    Article  PubMed  Google Scholar 

  15. Jackson Z, Meghji S, Macrobert A, Henderson B, Wilson M. Killing of the yeast and hyphal forms of candida albicans using a light-activated antimicrobial agent. Lasers Med Sci. 1999;14(2):150–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kömerik N, Curnow A, MacRobert AJ, Hopper C, Speight PM, Wilson M. Fluorescence biodistribution and photosensitising activity of toluidine blue o on rat buccal mucosa. Lasers Med Sci. 2002;17(2):86–92.

    Article  PubMed  Google Scholar 

  17. Li B, Lin L, Lin H, Wilson BC. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. J Biophotonics. 2016. doi: 10.1002/jbio.201600055.

    Google Scholar 

  18. Sabbahi S, Alouini Z, Jemli M, Boudabbous A. The role of reactive oxygen species in Staphylococcus aureus photoinactivation by methylene blue. Water Sci Technol. 2008;58(5):1047–54.

    Article  CAS  PubMed  Google Scholar 

  19. Curnow A, Haller JC, Bown SG. Oxygen monitoring during 5-aminolaevulinic acid induced photodynamic therapy in normal rat colon. Comparison of continuous and fractionated light regimes. J Photochem Photobiol B. 2000;58(2–3):149–55.

    Article  CAS  PubMed  Google Scholar 

  20. Pudroma X, Juzeniene A, Ma LW, Iani V, Moan J. Fluorescence photobleaching of ALA and ALA-heptyl ester induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: a comparison of two light sources and different illumination schemes. J Environ Pathol Toxicol Oncol. 2011;30(3):235–40.

    Article  CAS  PubMed  Google Scholar 

  21. Finlay JC, Zhu TC, Dimofte A, Stripp D, Malkowicz SB, Whittington R, et al. In vivo determination of the absorption and scattering spectra of the human prostate during photodynamic therapy. Proc SPIE Int Soc Opt Eng. 2014;5315:132–42.

    PubMed  PubMed Central  Google Scholar 

  22. Jarvi MT, Patterson MS, Wilson BC. Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements. Biophys J. 2012;102(3):661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Simões Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ribeiro, M.S., Sabino, C.P. (2016). Multimodality Dosimetry. In: Sellera, F., Nascimento, C., Ribeiro, M. (eds) Photodynamic Therapy in Veterinary Medicine: From Basics to Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-45007-0_7

Download citation

Publish with us

Policies and ethics