Skip to main content

Abstract

Classical pharmacology is normally concerned with defined molecular structures that can bind to specific proteins and either inhibit or enhance the protein function to achieve some biological response with therapeutic benefit. In photodynamic therapy (PDT) context, we rarely rely on such target specificity to achieve therapeutic success. Although some recent photosensitizers have been functionalized with target-specific molecules, such as antibodies, to recognize specific cells and enhance therapy specificity, ROS produced inside the cell will damage all susceptible molecules within the diffusion radius. According to the previous chapter, both hydroxyl radicals and singlet oxygen are highly reactive toward most of the abundant biological molecules contained in cells. In this chapter we discuss how such capacity of PDT to provoke multiple sites of molecular damages in the cellular context is associated with the phototoxicity produced. Also, we discuss how cellular antioxidant and xenobiotic defenses can influence on cellular tolerance against photodynamic inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Autor AP. Pathology of oxygen. New York: Academic; 1982. 384 p.

    Google Scholar 

  2. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford, UK: Oxford Press; 2015. 944 p.

    Book  Google Scholar 

  3. Copley SD, Dhillon JK. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol. 2002;3(5):research0025.

    Google Scholar 

  4. Kultz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol. 2005;67:225–57.

    Article  PubMed  Google Scholar 

  5. Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev. 2005;126(3):365–79.

    Article  CAS  PubMed  Google Scholar 

  6. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002;33(3):337–49.

    Article  CAS  PubMed  Google Scholar 

  7. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703(2):93–109.

    Article  CAS  PubMed  Google Scholar 

  8. Wilkinson F, Helman WP, Ross AB. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data. 1995;24(2):663–77.

    Article  CAS  Google Scholar 

  9. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, et al. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 2007;5(4):e92.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guidotti G. Membrane proteins. Annu Rev Biochem. 1972;41:731–52.

    Article  CAS  PubMed  Google Scholar 

  11. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen S, Kepp O, Kroemer G. The end of autophagic cell death? Autophagy. 2012;8(1):1–3.

    Article  PubMed  Google Scholar 

  13. Shen S, Kepp O, Michaud M, Martins I, Minoux H, Metivier D, et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene. 2011;30(45):4544–56.

    Article  CAS  PubMed  Google Scholar 

  14. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  15. Kessel D, Luo Y. Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B. 1998;42(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  16. Garg AD, Krysko DV, Vandenabeele P, Agostinis P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem Photobiol Sci. 2011;10(5):670–80.

    Article  CAS  PubMed  Google Scholar 

  17. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 2008;8(3):207–20.

    Article  CAS  PubMed  Google Scholar 

  18. Fonseca C, Dranoff G. Capitalizing on the immunogenicity of dying tumor cells. Clin Cancer Res. 2008;14(6):1603–8.

    Article  CAS  PubMed  Google Scholar 

  19. Singh H, Bishop J, Merritt J. Singlet oxygen and ribosomes: inactivation and sites of damage. J Photochem. 1984;25(2):295–307.

    Article  CAS  Google Scholar 

  20. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem. 2001;276(5):3149–57.

    Article  CAS  PubMed  Google Scholar 

  21. Hubmer A, Hermann A, Uberriegler K, Krammer B. Role of calcium in photodynamically induced cell damage of human fibroblasts. Photochem Photobiol. 1996;64(1):211–5.

    Article  CAS  PubMed  Google Scholar 

  22. Verfaillie T, Garg AD, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett. 2013;332(2):249–64.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor CT, McElwain JC. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology. 2010;25(5):272–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simic MG, Jovanovic SV. Antioxidation mechanisms of uric acid. J Am Chem Soc. 1989;111(15):5778–82.

    Article  CAS  Google Scholar 

  26. Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001;360(Pt 1):1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lafleur MV, Hoorweg JJ, Joenje H, Westmijze EJ, Retel J. The ambivalent role of glutathione in the protection of DNA against singlet oxygen. Free Radic Res. 1994;21(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  28. Miller AC, Henderson BW. The influence of cellular glutathione content on cell survival following photodynamic treatment in vitro. Radiat Res. 1986;107(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  29. Wang HP, Qian SY, Schafer FQ, Domann FE, Oberley LW, Buettner GR. Phospholipid hydroperoxide glutathione peroxidase protects against singlet oxygen-induced cell damage of photodynamic therapy. Free Radic Biol Med. 2001;30(8):825–35.

    Article  CAS  PubMed  Google Scholar 

  30. Oberdanner CB, Plaetzer K, Kiesslich T, Krammer B. Photodynamic treatment with fractionated light decreases production of reactive oxygen species and cytotoxicity in vitro via regeneration of glutathione. Photochem Photobiol. 2005;81(3):609–13.

    Article  CAS  PubMed  Google Scholar 

  31. Genina EA, Bashkatov AN, Sinichkin YP, Yanina IY, Tuchin VV. Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J Biomed Photon Eng. 2015;1(1):22–58.

    Article  Google Scholar 

  32. Huang YY, Vecchio D, Avci P, Yin R, Garcia-Diaz M, Hamblin MR. Melanoma resistance to photodynamic therapy: new insights. Biol Chem. 2013;394(2):239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mroz P, Huang YY, Szokalska A, Zhiyentayev T, Janjua S, Nifli AP, et al. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J. 2010;24(9):3160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Curr Med Chem. 2011;18(16):2486–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kishen A, Upadya M, Tegos GP, Hamblin MR. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol. 2010;86(6):1343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR. Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother. 2011;66(7):1525–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tegos GP, Masago K, Aziz F, Higginbotham A, Stermitz FR, Hamblin MR. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob Agents Chemother. 2008;52(9):3202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feijo Delgado F, Cermak N, Hecht VC, Son S, Li Y, Knudsen SM, et al. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells. PLoS One. 2013;8(7):e67590.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gryson O. Servier medical art France: Servier; 2016. Available from: http://www.servier.com/Powerpoint-image-bank.

Download references

Acknowledgments

Mr. Hamblin was supported by the US NIH Grant R01AI050875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caetano Padial Sabino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sabino, C.P., Hamblin, M.R. (2016). Cellular Damage. In: Sellera, F., Nascimento, C., Ribeiro, M. (eds) Photodynamic Therapy in Veterinary Medicine: From Basics to Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-45007-0_5

Download citation

Publish with us

Policies and ethics