Skip to main content

Nyquist Analog-to-Digital Conversion

  • Chapter
  • First Online:
Analog-to-Digital Conversion

Abstract

Several classifications exist of Nyquist-rate analog-to-digital converters. In this chapter the converters are subdivided into parallel search, sequential search, and linear search. Each of these architectures requires a comparator. Therefore this building block is extensively analyzed in all its aspects. The section is concluded with a comparator catalog.The full-flash converter is the conversion solution for the highest speed range. Moreover it is a building block for more complex converters. Variants such as gain stage, interpolation, and folding are analyzed and described.The sub-ranging methods and pipeline converters are the solutions for the medium speed range demands. Next to a treatise on the various aspects of the architecture an analysis is made of the error sources, calibration techniques, and design issues.In the next sections the successive approximation and linear topologies are discussed. These topologies are slower but receive today more attention as a massive parallelism allows them to compete with the performance of the pipeline converter. The issues associated with multiplexing are analyzed.Finally some less prominent ideas for conversion are briefly highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paraphrasing prof. Bram Nauta.

  2. 2.

    This bandwidth can start at DC, but also far above f s using down-sampling in Sect. 2.3.2

  3. 3.

    The term saturation is used to indicate that the circuit is far out of its operating point. Saturation of circuits has no relation with the operating regime of a transistor.

  4. 4.

    This voltage-delay relation can be exploited: measuring the delay is used to quantify the input voltage and create more resolution.

  5. 5.

    Dr. Richard Schreier comment is that metastability is based on the idea that voltages can be scaled down continuously: mV, μV, nV,…However, is there a limit given by the quantum character on atomic level?

  6. 6.

    The origin of the addition “full” in full-flash can refer to the conversion of the full range. “Partial-flash” converters can refer to a subranging architecture.

  7. 7.

    A potential test is to lower the digital amplitude by decreasing the digital power supply. If the distortion is reacting, then a coupling path must exist.

  8. 8.

    An often encountered error in a measurement set-up is a direct connection between the ADC chip and the input port of a laptop. Certainly some spurs related to the internal processing will be visible in the analog-to-digital conversion spectrum.

  9. 9.

    Some similarity exists with the way a monkey climbs a tree.

  10. 10.

    See data sheets from ADI, TI, and NXP. Some product numbers: AD9640, AD6645, ADS5474, and ADC1410. In some data sheets these converters are called pipeline converters. In the terminology of this book they are classified as subrange converters.

  11. 11.

    Be aware of bias noise and power supply variations, these can produce dependent errors.

  12. 12.

    This is not a sufficient condition as timing errors and the errors in the succeeding stages are ignored.

  13. 13.

    Watch out for the successive approximation converter!

  14. 14.

    This research was presented at the 2010 ISSCC forum, and still waits for some spare time to write a publication.

  15. 15.

    Don’t be surprised to see 10 mA flow into this part of the circuit. This aspect is hardly mentioned in F.o.M boosting designs.

  16. 16.

    You better do a good lay-out!

  17. 17.

    There is no equal sign between both formulas as they differ for the quantization error.

  18. 18.

    This section is based on a design by J. v. Rens.

  19. 19.

    The general form of this principle is in [261] identified as the Sweeney–Robertson–Tocher division principle.

  20. 20.

    Crest factor is the ratio between highest amplitude and average amplitude.

Bibliography

  1. van de Plassche R (1994) Integrated analog-to-digital and digital-to-analog converters. Kluwer Academic Publishers, Dordrecht. ISBN:0-7923-9436-4 (2nd edition. ISBN:1-4020-7500-6, The Netherlands, 2003)

    Google Scholar 

  2. Abo AM, Gray PR (1999) A 1.5-V, 10-bit, 14.3-MS/s CMOS pipe-line analog-to-digital converter. IEEE J Solid-State Circuits 34:599–606

    Article  Google Scholar 

  3. Limotyrakis S, Kulchycki SD, Su DK, Wooley BA (2005) A 150-MS/s 8-b 71-mW CMOS time-interleaved ADC. IEEE J Solid-State Circuits 40:1057–1067

    Article  Google Scholar 

  4. Song BA, Tompsett MF, Lakshmikumar KR (1988) A 12-bit 1-MS/s capacitor error-averaging pipelined A/D converter. IEEE J Solid-State Circuits 23:1324–1333

    Article  Google Scholar 

  5. Gregoire BR, Moon U (2008) An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain. IEEE J Solid-State Circuits 43:2620–2630

    Article  Google Scholar 

  6. Dingwall AGF, Zazzu V (1985) An 8-MHz CMOS Subranging 8-bit A/D converter. IEEE J Solid-State Circuits 20:1138–1143

    Article  Google Scholar 

  7. Song B-S, Lee S-H, Tompsett MFA (1990) 10-b 15-MHz CMOS recycling two-step A/D converter. IEEE J Solid-State Circuits 25:1328–1338

    Article  Google Scholar 

  8. Liu C-C, Chnag S-J, Huang G-Y, Lin Y-Z (2010) A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J Solid-State Circuits 45:731–740

    Article  Google Scholar 

  9. Chiang S-HW, Sun H, Razavi B (2014) A 10-bit 800-MHz 19-mW CMOS ADC. IEEE J Solid-State Circuits 49:935–949

    Article  Google Scholar 

  10. van der Goes F, Ward CM, Astgimath S, Yan H, Riley J, Zeng Z, Mulder J, Wang S, Bult K (2014) A 1.5 mW 68 dB SNDR 80 Ms/s 2 interleaved pipelined SAR ADC in 28 nm CMOS. IEEE J Solid-State Circuits 49:2835–2845

    Article  Google Scholar 

  11. Fiedler HL, Hoefflinger B, Demmer W, Draheim P (1981) A 5-bit building block for 20 MHz A/D converters. IEEE J Solid-State Circuits 26:151–155

    Article  Google Scholar 

  12. Nauta B, Venes AGW (1995) A 70 Ms/s 110 mW 8-b CMOS folding and interpolating A/D converter. IEEE J Solid-State Circuits 30:1302–1308

    Article  Google Scholar 

  13. Yin G, Op’t Eynde F, Sansen W (1992) A high-speed CMOS comparator with 8-b resolution. IEEE J Solid-State Circuits 27:208–211

    Article  Google Scholar 

  14. Venes AGW, van de Plassche RJ (1996) An 80-MHz, 80-mW, 8-b CMOS folding A/D converter with distributed track-and-hold preprocessing. IEEE J Solid-State Circuits 31:1846–1853

    Article  Google Scholar 

  15. Ellersick W, Chih-Kong KY, Horowitz M, Dally W (1999) GAD: a 12-GS/s CMOS 4-bit A/D converter for an equalized multi-level link. In: Symposium on VLSI circuits, digest of technical papers, pp 49–52

    Google Scholar 

  16. Kobayashi T, Nogami K, Shirotori T, Fujimoto Y (1993) A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J Solid-State Circuits 28:523–527

    Article  Google Scholar 

  17. Montanaro J et al (1996) A 160 MHz, 32b, 0.5W CMOS RISC microprocessor. IEEE J Solid-State Circuits 31:1703–1714

    Article  Google Scholar 

  18. Verbruggen B, Craninckx J, Kuijk M, Wambacq P, Van der Plas G (2008) A 2.2 mW 5b 1.75GS/s folding flash ADC in 90 nm digital CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 252–611

    Google Scholar 

  19. Schinkel D, Mensink E, Klumperink E, van Tuijl E, Nauta B (2007) A double-tail latch-type voltage sense amplifier with 18ps Setup+Hold Time. In: IEEE international solid-state circuits conference, digest of technical papers, pp 314–315

    Google Scholar 

  20. Wu J-T, Wooley BA (1988) A 100-MHz pipelined CMOS comparator. IEEE J Solid-State Circuits 23:1379–1385

    Article  Google Scholar 

  21. Fukushima N, Yamada T, Kumazawa N, Hasegawa Y, Soneda M (1989) A CMOS 40 MHz 8b 105 mW two-step ADC. In: International solid-state circuits conference, digest of technical papers, pp 14–15

    Google Scholar 

  22. Atherton JH, Simmonds HT (1992) An offset reduction technique for use with CMOS integrated comparators and amplifiers. IEEE J Solid-State Circuits 27:1168–1175

    Article  Google Scholar 

  23. Haas M, Draxelmayr D, Kuttner F, Zojer B (1990) A monolithic triple 8-bit CMOS video coder. IEEE Trans Consumer Electron 36:722–729

    Article  Google Scholar 

  24. Wong K-LJ, Yang C-KK (2004) Offset compensation in comparators with minimum input-referred supply noise. IEEE J Solid-State Circuits 37:837–840

    Article  Google Scholar 

  25. Chen VH-C, Pileggi L (2014) A 69.5 mW 20 GS/s 6b time-interleaved ADC with embedded time-to-digital calibration in 32 nm CMOS SOI. IEEE J Solid-State Circuits 49:2891–2901

    Article  Google Scholar 

  26. Schvan P, Pollex D, Wang S-C, Falt C, Ben-Hamida N (2006) A 22GS/s 5b ADC in 0.13μm SiGe BiCMOS. In: International solid-state circuits conference, digest of technical papers, pp 572–573

    Google Scholar 

  27. Reyhani H, Quinlan P (1994) A 5 V, 6-b, 80 Ms/s BiCMOS flash ADC. IEEE J Solid-State Circuits 29:873–878

    Article  Google Scholar 

  28. Vorenkamp P, Verdaasdonk JPM (1992) A 10b 50MHz pipelined ADC. In: International solid-state circuits conference, digest of technical papers, pp 32–33

    Google Scholar 

  29. Kattmann K, Barrow J (1991) A technique for reducing differential nonlinearity errors in flash A/D converters. In: International solid-state circuits conference, digest of technical papers, pp 170–171

    Google Scholar 

  30. Scholtens PCS, Vertregt M (2002) A 6-b 1.6-Gsample/s flash ADC in 0.18μm CMOS using averaging termination. IEEE J Solid-State Circuits 37:1599–1609

    Article  Google Scholar 

  31. Bult K, Buchwald A (1997) An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2. IEEE J Solid-State Circuits 32:1887–1895

    Article  Google Scholar 

  32. Uyttenhove K, Vandenbussche J, Lauwers E, Gielen GGE, Steyaert MSJ (2003) Design techniques and implementation of an 8-bit 200-MS/s interpolating/averaging CMOS A/D converter. IEEE J Solid-State Circuits 38:483–494

    Article  Google Scholar 

  33. Van De Grift REJ, Rutten IWJM, van der Veen M (1987) An 8-bit video ADC incorporating folding and interpolation techniques. IEEE J Solid-State Circuits 22:944–953

    Article  Google Scholar 

  34. Vorenkamp P, Roovers R (1997) A 12-b, 60-MS/s cascaded folding and interpolating ADC. IEEE J Solid-State Circuits 32:1876–1886

    Article  Google Scholar 

  35. Van De Plassche RJ, van der Grift REJ (1979) A high-speed 7 bit A/D converter. IEEE J Solid-State Circuits 14:938–943

    Article  Google Scholar 

  36. Hoogzaad G, Roovers R (1999) A 65-mW, 10-bit, 40-MS/s BiCMOS Nyquist ADC in 0.8 mm2. IEEE J Solid-State Circuits 34:1796–1802

    Article  Google Scholar 

  37. Choe MJ, Song B-S, Bacrania K (2000) A 13b 40MS/s CMOS pipelined folding ADC with background offset trimming. In: International solid-state circuits conference, digest of technical papers, pp 36–37

    Google Scholar 

  38. Pernillo J, Flynn MP (2011) A 1.5-GS/s flash ADC with 57.7-dB SFDR and 6.4-Bit ENOB in 90 nm digital CMOS. IEEE Trans Circuits Syst II Exp Briefs 58:837–841

    Article  Google Scholar 

  39. Shu Y-S (2012) A 6b 3GS/s 11 mW fully dynamic flash ADC in 40nm CMOS with reduced number of comparators. In: Symposium on VLSI circuits digest of technical papers, pp 26–27

    Google Scholar 

  40. van der Ploeg H, Vertregt M, Lammers M (2006) A 15-bit 30-MS/s 145-mW three-step ADC for imaging applications. IEEE J Solid-State Circuits 41:1572–1577

    Article  Google Scholar 

  41. Lewis SH, Gray PR (1987) A pipelined 5-MS/s 9-bit analog-to-digital converter. IEEE J Solid-State Circuits 22:954–961

    Article  Google Scholar 

  42. Shimizu Y, Murayama S, Kudoh K, Yatsuda H, Ogawa A (2006) A 30mW 12b 40MS/s subranging ADC with a high-gain offset-canceling positive-feedback amplifier in 90nm digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 802–803

    Google Scholar 

  43. Kusumoto K, Matsuzawa A, Murata K (1993) A 10-b 20-MHz 30-mW pipelined interpolating CMOS ADC. IEEE J Solid-State Circuits 28:1200–1206

    Article  Google Scholar 

  44. Mulder J et al (2004) A 21 mW 8b 125MS/s ADC occupying 0.09 mm2 in 0.13 μm CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 260–261

    Google Scholar 

  45. Lee CC, Flynn MP (2011) A SAR-assisted two-stage pipeline ADC. IEEE J Solid-State Circuits 46:859–869

    Article  Google Scholar 

  46. Moreland C, Murden F, Elliott M, Young J, Hensley M, Stop R (2000) A 14b 100MS/s subranging ADC. IEEE J Solid-State Circuits 35:1791–1798

    Article  Google Scholar 

  47. McCharles R, Hodges D (1978) Charge circuits for analog LSI. IEEE Trans Circuits Systems 25:490–497

    Article  Google Scholar 

  48. Cho TB, Gray PR (1995) A 10 b, 20 Msample/s, 35 mW pipeline A/D converter. IEEE J Solid-State Circuits 30:166–172

    Article  Google Scholar 

  49. Singer LA, Brooks TL (1996) A 14-bit 10-MHz calibration-free CMOS pipelined A/D converter. In: Proceedings symposium on VLSI circuits, pp 94–95

    Google Scholar 

  50. Ali AMA, Dillon C, Sneed R, Morgan AS, Bardsley S, Kornblum J, Wu L (2006) A 14-bit 125MS/s IF/RF sampling pipelined ADC with 100 dB SFDR and 50 fs jitter. IEEE J Solid-State Circuits 41:1846–1855

    Article  Google Scholar 

  51. Li PW, Chin MJ, Gray PR, Castello R (1984) A ratio-independent algorithmic analog-to-digital conversion technique. IEEE J Solid-State Circuits 19:828–836

    Article  Google Scholar 

  52. Chiu Y, Gray PR, Nikolic B (2004) A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR. IEEE J Solid-State Circuits 39:2139–2151

    Article  Google Scholar 

  53. Wang H, Wang X, Hurst PJ, Lewis SH (2009) Nested digital background calibration of a 12-bit pipelined ADC without an input SHA. IEEE J Solid-State Circuits 44:2780–2789

    Article  Google Scholar 

  54. Bult K, Geelen GJGM (1990) A fast-settling CMOS op amp for SC circuits with 90-dB DC gain. IEEE J Solid-State Circuits 25:1379–1384

    Article  Google Scholar 

  55. Chai Y, Wu J-T (2012) A 5.37mW 10b 200MS/s dual-path pipelined ADC. In: International solid-state circuits conference, digest of technical papers, pp 462–463

    Google Scholar 

  56. Wang X, Hurst PJ, Lewis SH (2004) A 12-bit 20-MS/s pipelined analog-to-digital converter with nested digital background calibration. IEEE J Solid-State Circuits 39:1799–1808

    Article  Google Scholar 

  57. Murmann B (2012) Thermal noise in track-and-hold circuits: analysis and simulation techniques. IEEE Solid-State Circuits Mag 4:46–54

    Article  Google Scholar 

  58. Karanicolas AN, Lee H-S, Barcrania KL (1993) A 15-b 1-MS/s digitally self-calibrated pipeline ADC. IEEE J Solid-State Circuits 28:1207–1215

    Article  Google Scholar 

  59. Nagaraj K, Fetterman HS, Anidjar J, Lewis SH, Renninger RG (1997) A 250-mW, 8-b, 52-MSs/s parallel-pipelined A/D converter with reduced number of amplifiers. IEEE J Solid-State Circuits 32:312–320

    Article  Google Scholar 

  60. Murmann B, Boser BE (2003) A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification. IEEE J Solid-State Circuits 38:2040–2050

    Article  Google Scholar 

  61. Iroaga E, Murmann B (2007) A 12-Bit 75-MS/s pipelined ADC using incomplete settling. IEEE J Solid-State Circuits 42:748–756

    Article  Google Scholar 

  62. Geelen G, Paulus E, Simanjuntak D, Pastoor H, Verlinden R (2006) A 90nm CMOS 1.2V 10b power and speed programmable pipelined ADC with 0.5pJ/conversion-step. In: International solid-state circuits conference, digest of technical papers, pp 214–215

    Google Scholar 

  63. Bardsley S, Dillon C, Kummaraguntla R, Lane C, Ali AMA, Rigsbee B, Combs D (2006) A 100-dB SFDR 80-MSPS 14-bit 0.35-μm BiCMOS pipeline ADC. IEEE J Solid-State Circuits 41:2144–2153

    Article  Google Scholar 

  64. Tseng C-J, Chen H-W, Shen W-T, Cheng W-C, Chen H-S (2012) A 10-b 320-MS/s stage-gain-error self-calibration pipeline ADC. IEEE J Solid-State Circuits 47:1334–1343

    Article  Google Scholar 

  65. Ali AMA et al (2014) A 14 Bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE J Solid-State Circuits 49:2857–2867

    Article  Google Scholar 

  66. Min BM, Kim P, Bowman FW, Boisvert DM, Aude AJ (2003) A 69-mW 10-bit 80-MS/s pipelined CMOS ADC. IEEE J Solid-State Circuits 38:2031–2039

    Article  Google Scholar 

  67. Lee BG, Tsang RM (2009) A 10-bit 50 MS/s pipelined ADC with capacitor-sharing and variable-gm opamp. IEEE J Solid-State Circuits 44:883–890

    Article  Google Scholar 

  68. Mehr I, Singer L (2000) A 55-mW 10-bit 40-MS/s Nyquist-rate CMOS ADC. IEEE J Solid-State Circuits 35:318-323

    Article  Google Scholar 

  69. Sepke T, Fiorenza JK, Sodini CG, Holloway P, Lee H-S (2006) Comparator-based switched-capacitor circuits for scaled CMOS technologies. In: International solid-state circuits conference, digest of technical papers, pp 812–821

    Google Scholar 

  70. Brooks L, Lee H-S (2009) A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB. In: International solid-state circuits conference, digest of technical papers, pp 166–167

    Google Scholar 

  71. McCreary JL, Gray PR (1975) All-MOS charge redistribution analog-to-digital conversion techniques I. IEEE J Solid-State Circuits 10:371-379

    Article  Google Scholar 

  72. Hamade AR (1978) A single chip all-MOS 8-bit A/D converter. IEEE J Solid-State Circuits 13:785–791

    Article  Google Scholar 

  73. Wei H et al (2012) An 8-b 400-MS/s 2-b-per-cycle SAR ADC with resistive DAC. IEEE J Solid-State Circuits 47:2763–2772

    Article  Google Scholar 

  74. Craninckx J, Van der Plas G (2007) A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm Digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 246-247

    Google Scholar 

  75. Agnes A, Bonizzoni E, Malcovati P, Maloberti F (2008) A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with time-domain comparator. In: International solid-state circuits conference, digest of technical papers, pp 246–247

    Google Scholar 

  76. van Elzakker M, van Tuijl E, Geraedts P, Schinkel D, Klumperink E, Nauta B (2008) A 1.9μW 4.4fJ/conversion-step 10b 1MS/s charge-redistribution ADC. In: International solid-state circuits conference, digest of technical papers, pp 244–245

    Google Scholar 

  77. Ginsburg BP, Chandrakasan AP (2007) 500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC. IEEE J Solid-State Circuits 42:739–747

    Article  Google Scholar 

  78. Chen DG, Law MK, Lian Y, Bermak A (2016) Low-power CMOS laser doppler imaging using non-CDS pixel readout and 13.6-bit SAR ADC. IEEE Trans Biomed Circuits Syst 10:186–199

    Article  Google Scholar 

  79. Kuttner F (2002) A 1.2V 10 b 20 MS/s non-binary successive approximation ADC in 0.13μm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 176–177

    Google Scholar 

  80. Harpe PJA, Zhou C, Bi Y, van der Meijs NP, Wang X, Philips KJP, Dolmans G, de Groot HWH (2011) A 26 μW 8 bit 10 MS/s asynchronous SAR ADC for low energy radios. IEEE J Solid-State Circuits 46:1585–1595

    Article  Google Scholar 

  81. Harpe PJA, Cantatore E, van Roermund AHM (2014) An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. In: International solid-state circuits conference, digest of technical papers, pp 194–195

    Google Scholar 

  82. Liu W, Chang y, Hsien S-K et al (2009) A 600 mW 30 mW 0.13 μm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization. In: International solid-state circuits conference, digest of technical papers, pp 82-83

    Google Scholar 

  83. Bannon A, Hurrell CP, Hummerston D, Lyden C (2014) An 18-b 5-MS/s SAR ADC with 100.2 dB dynamic range. In: Symposium on VLSI circuits digest of technical papers, pp 1–2

    Google Scholar 

  84. Hesener M, Ficher T, Hanneberg A, Herbison D, Kuttner F, Wenskel H (2007) A 14b 40MS/s redundant SAR ADC with 480 MHz in 0.13 pm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 248–249

    Google Scholar 

  85. Harpe P, Zhang Y, Dolmans G, Philips K, de Groot H (2012) A 7-to-10b, 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step. In: International solid-state circuits conference, digest of technical papers, pp 472–473

    Google Scholar 

  86. Pelgrom MJM, van Rens AC, Vertregt M, Dijkstra MB (1994) A 25-Ms/s 8-bit CMOS A/D converter for embedded application. IEEE J Solid-State Circuits 29:879–886

    Article  Google Scholar 

  87. Murray B, Menting H (1992) A highly integrated D2MAC decoder. In: IEEE international conference on consumer electronics, digest of technical papers, pp 56–57

    Google Scholar 

  88. Shih C, Gray PR (1986) Reference refreshing cyclic analog-to-digital and digital-to-analog converters. IEEE J Solid-State Circuits 21:544–554

    Article  Google Scholar 

  89. Ginetti B, Jespers P, Vandemeulebroecke A (1992) A CMOS 13-b cyclic. A/D converter. IEEE J Solid-State Circuits 27:957–964

    Article  Google Scholar 

  90. Mase M, Kawahito S, Sasaki M, Wakamori Y, Furuta M (2005) A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters. IEEE J Solid-State Circuits 40:2787–2795

    Article  Google Scholar 

  91. Lim S et al (2011) A 240-frames/s 2.1-Mpixel CMOS image sensor with column-shared cyclic ADCs. IEEE J Solid-State Circuits 46:2073-2083

    Article  Google Scholar 

  92. Naraghi S, Courcy M, Flynn MP (2009) A 9b 14 μW 0.06 mm2 PPM ADC in 90nm digital CMOS. In: IEEE International solid-state circuits conference digest of technical papers, pp 168–169

    Google Scholar 

  93. Snoeij MF, Theuwissen AJP, Makinwa KAA, Huijsing JH (2007) Multiple-ramp column-parallel ADC architectures for CMOS image sensors. IEEE J Solid-State Circuits 42:2986–2977

    Article  Google Scholar 

  94. Howard BK (1955) Binary quantizer. US patent 2-715-678

    Google Scholar 

  95. van der Ploeg H, Hoogzaad G, Termeer HAH, Vertregt M, Roovers RLJ (2001) A 2.5V, 12b, 54MS/s, 0.25um CMOS ADC. In: International solid-state circuits conference, digest of technical papers, pp 132–133

    Google Scholar 

  96. Mark JW, Todd TD (1981) A nonuniform sampling approach to data compression. IEEE Trans Commun 29:24–32

    Article  Google Scholar 

  97. Trakimas M, Sonkusale SR (2011) An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans Circuits Syst I 58:921–934

    Article  MathSciNet  Google Scholar 

  98. Lin C-S, Liu B-D (2003) A new successive approximation architecture for low-power low-cost CMOS A/D converter. IEEE J Solid-State Circuits 38:54–62

    Article  Google Scholar 

  99. Chen S-WM, Brodersen RW (2006) A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid-State Circuits 41:2669–2680

    Article  Google Scholar 

  100. Straayer MZ, Perrott MH (2008) A 12-Bit, 10-MHz bandwidth, continuous-time ADC with a 5-Bit, 950-MS/s VCO-based quantizer. IEEE J Solid-State Circuits 43:805–814

    Article  Google Scholar 

  101. Jansson J-P, Mantyniemi A, Kostamovaara J (2006) A CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J Solid-State Circuits 41:1286–1296

    Article  Google Scholar 

  102. Chen P, Liu S-L, Wu J (2000) A CMOS pulse-shrinking delay element for time interval measurement. IEEE Trans Circuits Syst 47:954–958

    Article  Google Scholar 

  103. Rahkonen TE, Kostamovaara JT (1993) The use of stabilized CMOS delay lines for the digitization of short time intervals. IEEE J Solid-State Circuits 28:887–894

    Article  Google Scholar 

  104. van der Ploeg H (1997) The nonius analog-to-digital converter. Internal Philips Research report, University Twente B.Sc. report, Supervisor M. Pelgrom

    Google Scholar 

  105. Groza VZ (2001) High-resolution floating-point ADC. IEEE Trans Instrum Meas 50:1812–1829 9. Time-Interleaving

    Google Scholar 

  106. Varzaghani A et al (2013) A 10.3-GS/s, 6-bit flash ADC for 10G ethernet applications. IEEE J Solid-State Circuits 48(8):3038–3048

    Article  Google Scholar 

  107. Verbruggen B, Iriguchi M, Craninckx J (2012) A 1.7mW 11b 250MS/s 2× interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 466–467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelgrom, M. (2017). Nyquist Analog-to-Digital Conversion. In: Analog-to-Digital Conversion. Springer, Cham. https://doi.org/10.1007/978-3-319-44971-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44971-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44970-8

  • Online ISBN: 978-3-319-44971-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics