Skip to main content

Digital-to-Analog Conversion

  • Chapter
  • First Online:
Analog-to-Digital Conversion
  • 5743 Accesses

Abstract

The two most important architectures for constructing a digital-to-analog converter are the unary and binary approach. Both approaches have their merits. Next to the architecture, the second choice is the domain in which the converter is realized: voltage, current, charge or time. Realizations in all these domains are discussed and their specific behavior is analyzed. The resistor string is an important conversion element as it constitutes the digital-to-analog function in a flash converter. Its dynamic behavior is essential for reaching high-speed performance. The binary counterpart of this converter is the R-2R architecture. The current-steering topology is the dominant realization for fast stand-alone digital-to-analog conversion. The properties of this converter are described and analyzed. Charge domain converters are mostly applied in lower-performance, low-power applications. Various topologies allow to choose between low area or better performance. A special section is dedicated to error sources and methods to improve the performance. The dynamic element matching, current calibration, and data weighted averaging methods are explained. A number of examples detail the design considerations and choices. Lay-out examples of commonly used structures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many more representations exist, this table only lists the ones used in this book.

  2. 2.

    In this section the effect of statistical errors is examined. In the following chapters compensation and calibration techniques are discussed.

  3. 3.

    Formally the more correct approach involves starting with DNL = 2N(y 1y 2)∕(y 1 + y 2) − 1.

  4. 4.

    When counting elements and nodes of a series string, there is ambiguity: a string of 2N elements has 2N + 1 nodes if the outer connecting nodes are counted. So 1024 resistors give 1025 node voltages. In this book the number of elements is a power of 2, and the highest tap is left unused.

  5. 5.

    It is convenient to look in literature for solutions of the “Heat equation” problem with your specific boundary conditions and rewrite them to voltage equations.

  6. 6.

    It seems that a shortcut is possible by using the string of M resistors, however this string shares m resistors with R 1 and the covariance has to be included, which is a possible route, but not pleasant.

  7. 7.

    Explanation from Colin Lyden (ADI).

  8. 8.

    Also known as Kelvin-connection and four-point sensing.

  9. 9.

    Diffused resistors are a preferred alternative in more advanced processes.

  10. 10.

    The main remaining gradient in processes with an epitaxial layer is caused by the temperature differences in the die and voltage drops over the wiring.

  11. 11.

    Think of all the energy your tweeter loudspeakers would have to consume.

  12. 12.

    The ratio between signal power and the power of the harmonics of a perfect block wave is 1∕(π 2∕8 − 1) = 4. 27 or 6.31 dB.

  13. 13.

    Assuming only one edge is jittering.

  14. 14.

    From a discussion with Lucien Breems for the AACD 2016 pannel.

  15. 15.

    Two sources are available as the originator of DWA: Michael Story [174] and Maloberti [175].

  16. 16.

    Odd value: to stay away from idle patterns at this stage of the explanation.

  17. 17.

    In Chap. 10 “idle patterns” are discussed. The patterns in data-weighted averaging bear a lot of resemblance but come from a completely different origin.

Bibliography

  1. Reeves H (1942) A electric signaling system. US Patent 2-272-070, issued February 3, 1942. Also French Patent 852–183 issued 1938, and British Patent 538–860 issued 1939

    Google Scholar 

  2. van de Plassche RJ (1976) Dynamic element matching for high-accuracy monolithic D/A converters. IEEE J Solid-State Circuits 21:795–800

    Article  Google Scholar 

  3. Schouwenaars HJ, Dijkmans EC, Kup BMJ, van Tuijl EJM (1986) A monolithic dual 16-bit D/A converter. IEEE J Solid-State Circuits 21:424–429

    Article  Google Scholar 

  4. Groeneveld DWJ, Schouwenaars HJ, Termeer HAH, Bastiaansen CAA (1989) A self-calibration technique for monolithic high-resolution D/A converters. IEEE J Solid-State Circuits 24:1517–1522

    Article  Google Scholar 

  5. Schouwenaars HJ, Groeneveld DWJ, Termeer HAH (1988) A low-power stereo 16-bit CMOS D/A converter for digital audio. IEEE J Solid-State Circuits 23:1290–1297

    Article  Google Scholar 

  6. Jin J, Gao Y, Sanchez-Sinencio E (2014) An energy-efficient time-domain asynchronous 2 b/Step SAR ADC with a hybrid R-2R/C-3C DAC structure.IEEE J Solid-State Circuits 49:1383–1396

    Google Scholar 

  7. Meaney RA, Speer RJ (1991) Voltage-switching D/A converter using p- and n-channel MOSFETs. US Patent 5.075.677

    Google Scholar 

  8. McLachlan RC, Gillespie A, Coln MlCW, Chisholm D, Lee DT (2013) A 20b clockless DAC with sub-ppm-linearity 7.5 nV/\(\sqrt{\mathrm{Hz}}\)-noise and 0.05 ppm/C-stability. In: IEEE international solid-state circuits conference, digest of technical papers, pp 278–279

    Google Scholar 

  9. Dingwall AGF, Zazzu V (1985) An 8-MHz CMOS Subranging 8-bit A/D converter. IEEE J Solid-State Circuits 20:1138–1143

    Article  Google Scholar 

  10. Abrial A, Bouvier J, Fournier J, Senn P, Viellard M (1988) A 27-MHz digital-to-analog video processor. IEEE J Solid-State Circuits 23:1358–1369

    Article  Google Scholar 

  11. Pelgrom MJM (1990) A 10b 50MHz CMOS D/A converter with 75\(\Omega \) buffer. IEEE J Solid-State Circuits 25:1347–1352

    Article  Google Scholar 

  12. Ahuja B (1983) An improved frequency compensation technique for CMOS operational amplifiers. IEEE J Solid-State Circuits 18:629–633

    Article  MathSciNet  Google Scholar 

  13. Lin C-H, Bult K (1998) A 10-b 250-M sample/s CMOS DAC in 1 mm2. IEEE international solid-state circuits conference, digest of technical papers, pp 214–215

    Google Scholar 

  14. Van Den Bosch A, Borremans M, Steyaert M, Sansen W (2001) A 12 b 500 MS/s current-steering CMOS D/A converter. In: IEEE international solid-state circuits conference, digest of technical papers, pp 366–367

    Google Scholar 

  15. Van den Bosch A, Borremans M, Steyaert M, Sansen W (2001) A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter. IEEE J Solid-State Circuits 36:315–324

    Article  Google Scholar 

  16. Miki T, Nakamura Y, Nakaya M, Asai S, Akasaka Y, Horiba Y (1986) An 80-MHz 8-bit CMOS D/A converter. IEEE J Solid-State Circuits 21:983–988

    Article  Google Scholar 

  17. Bastiaansen CAA, Groeneveld DWJ, Schouwenaars HJ, Termeer HAH (1991) A 10-b 40-MHz 0.8-μm CMOS current-output D/A converter. IEEE Journal Solid-State Circuits 26:917–921

    Article  Google Scholar 

  18. Doris K, Briaire J, Leenaerts D, Vertregt M, van Roermund A (2005) A 12b 500MS/s DAC with > 70 dB SFDR up to 120 MHz in 0.18 μm CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 116–588

    Google Scholar 

  19. Van der Plas GAM, Vandenbussche J, Sansen W, Steyaert MSJ, Gielen GGE (1999) A 14-bit intrinsic accuracy Q 2 random walk CMOS DAC. IEEE J Solid-State Circuits 34:1708–1718

    Article  Google Scholar 

  20. Jewett B, Liu J, Poulton K (2005) A 1.2GS/s 15b DAC for precision signal generation. In: IEEE international solid-state circuits conference, digest of technical papers, pp 110–111

    Google Scholar 

  21. Chen T, Gielen GGE (2007) A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration. IEEE J. Solid-State Circuits 42:2386–2394

    Article  Google Scholar 

  22. Lin C-H, van der Goes FML, Westra JR, Mulder J, Lin Y, Arslan E, Ayranci E, Liu X, Bult K (2009) A 12 bit 2.9 GS/s DAC With IM3 < -60 dBc beyond 1 GHz in 65 nm CMOS. IEEE J Solid-State Circuits 44:3285–3293

    Article  Google Scholar 

  23. Mercer DA (2007) Low-power approaches to high-speed current-steering digital-to-analog converters in 0.18-μm CMOS. IEEE J Solid-State Circuits 42:1688–1698

    Article  Google Scholar 

  24. Park S, Kim G, Park SC, Kim W (2002) A digital-to-analog converter based on differential-quad switching. IEEE J Solid-State Circuits 37:1335–1338

    Article  Google Scholar 

  25. Engel G, Kuo S, Rose S (2012) A 14-b 3/6GS/s current-steering RF DAC in 0.18-μm CMOS with 66 dB ACLR at 2.9 GHz. In: IEEE international solid-state circuits conference, digest of technical papers, pp 458–459

    Google Scholar 

  26. van de Vel H, Briaire J, Bastiaansen C, van Beek P, Geelen G, Gunnink H, Jin Y, Kaba M, Luo K, Paulus E, Pham B, Relyveld W, Zijlstra P (2014) A 240 mW 16b 3.2GS/s DAC in 65nm CMOS with < -80dBc IM3 up to 600 MHz. In: IEEE international solid-state circuits conference, digest of technical papers, pp 206–207

    Google Scholar 

  27. Engel G, Clara M, Zhu H, Wilkins P (2015) A 16-bit 10Gsps current steering RF DAC in 65 nm CMOS achieving 65dBc ACLR multi-carrier performance at 4.5 GHz Fout. In: Symposium on VLSI circuits digest of technical papers, pp C166–167

    Google Scholar 

  28. Su DK, Wooley BA (1993) A CMOS oversampling D/A converter with a current-mode semidigital reconstruction filter. IEEE J Solid-State Circuits 28:1224–1233

    Article  Google Scholar 

  29. Barkin DB, Lin ACY, Su DK, Wooley BA (2004) A CMOS oversampling bandpass cascaded D/A converter with digital FIR and current-mode semi-digital filtering. IEEE J Solid-State Circuits 39:585–593

    Article  Google Scholar 

  30. Suarez RE, Gray PR, Hodges DA (1975) All-MOS charge-redistribution analog-to-digital conversion techniques. II. IEEE J Solid-State Circuits 10:379–385

    Article  Google Scholar 

  31. Song B-S, Lee S-H, Tompsett MFA (1990) 10-b 15-MHz CMOS recycling two-step A/D converter. IEEE J Solid-State Circuits 25:1328–1338

    Article  Google Scholar 

  32. Liu C-C, Chnag S-J, Huang G-Y, Lin Y-Z (2010) A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J Solid-State Circuits 45:731–740

    Article  Google Scholar 

  33. Lim Y, Flynn MP (2015) A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC. IEEE J Solid-State Circuits 50:2901–2911

    Article  Google Scholar 

  34. Pelgrom MJM, Roorda M (1988) An algorithmic 15 bit CMOS digital-to-analog converter. IEEE J Solid-State Circuits 23:1402–1405

    Article  Google Scholar 

  35. Matsumoto H, Watanabe K (1986) Switched-capacitor algorithmic digital-to-analog converters. IEEE Trans Circuits Syst 33:721–724

    Article  Google Scholar 

  36. Philips K, van den Homberg J, Dijkmans C (1999) PowerDAC: a single-chip audio DAC with a 70%-efficient power stage in 0.5 μm CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 154–155

    Google Scholar 

  37. Fan Q, Huijsing JH, Makinwa KAA (2012) A 21 nV/\(\sqrt{\mbox{ Hz}}\) Hz chopper-stabilized multi-path current-feedback instrumentation amplifier with 2 μV offset. IEEE J Solid-State Circuits 47:464–475

    Article  Google Scholar 

  38. Blanken PG, Menten SEJ (2002) A 10 μV-offset 8 kHz bandwidth 4th-order chopped \(\Sigma \Delta \) A/D converter for battery management. In: IEEE international solid-state circuits conference, digest of technical papers, pp 388–389

    Google Scholar 

  39. Carley L (1989)A noise-shaping coder topology for 15+ bit converters. IEEE J Solid-State Circuits 24:267–273

    Google Scholar 

  40. Nys OJAP, Henderson RK (1996) An analysis of dynamic element matching techniques in sigma-delta modulation. In: IEEE international symposium on circuits and systems, pp 231–234

    Google Scholar 

  41. Henderson RK, Nys OJAP (1996) Dynamic element matching techniques with arbitrary noise shaping function. In: IEEE international symposium on circuits and systems, pp 293–296

    Google Scholar 

  42. Story MJ (1992) Digital to analog converter adapted to select input sources based on a preselected algorithm once per cycle of a sampling signal. US patent 5-138-317

    Google Scholar 

  43. Maloberti A (1990/1991) Convertitore Digitale Analogico Sigma-Delta Multilivello con Matching Dinamico degli Elementi, Tesi di Laurea, Universita degli Studi di Pavia (this thesis was not available)

    Google Scholar 

  44. Miller MR, Petrie CS (2003) A multibit sigma-delta ADC for multimode receivers. IEEE J Solid-State Circuits 38:475–482

    Article  Google Scholar 

  45. Risbo L, Hezar R, Kelleci B, Kiper H, Fares M (2011) A 108 dB DR. 120 dB THD and 0.5V rms output audio DAC with inter-symbol-interference-shaping algorithm in 45 nm CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 484–485 8. Analog-to-Digital Conversion

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelgrom, M. (2017). Digital-to-Analog Conversion. In: Analog-to-Digital Conversion. Springer, Cham. https://doi.org/10.1007/978-3-319-44971-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44971-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44970-8

  • Online ISBN: 978-3-319-44971-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics