Skip to main content

Reference Circuits

  • Chapter
  • First Online:
Analog-to-Digital Conversion
  • 5683 Accesses

Abstract

Every converter needs a reference quantity to link the numerical values on one side of the converter to a physical quantity on the other side. Several requirements are posed on the reference generator. The most common reference is based on the band-gap energy of silicon. The general scheme for a band-gap circuit is extensively discussed as well as the limitations of the various components. The effect of mismatch in this circuit is described at the hand of an example. Finally a few implementations of low-voltage band-gap circuits are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The author thankfully acknowledges the corrections by Dr. Anne-Johan Annema, University Twente.

  2. 2.

    Don’t say: “This will not happen to me.”

  3. 3.

    The correction factor to get I pn (V pn  = 0) = 0 has been omitted.

  4. 4.

    It is certainly possible to use two identical diodes and feeding two different currents. However, designing an accurate current ratio appears more difficult than designing an array of diodes.

  5. 5.

    Temperature dependence of the resistors or other components is canceled during the fine tuning of N R in the simulation.

  6. 6.

    see Stefan Marinca, ADI patents, e.g., US6.891.358.

  7. 7.

    Specialized processes with layer of tungsten or titanium compounds offer resistors with far better properties.

  8. 8.

    It is unknown how this paper reached the internet.

  9. 9.

    The same math applies here as for the standard circuit.

  10. 10.

    This option is mentioned in product announcements by Xicor and Intersil, e.g., application note AN177.

Bibliography

  1. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York (3rd edition. ISBN:978-0-471-14323-9, 2006)

    Google Scholar 

  2. Hilbiber D (1964) A new semiconductor voltage standard. In: IEEE international solid-state circuits conference, digest of technical papers, pp 32–33

    Google Scholar 

  3. Widlar RJ (1971) New developments in IC voltage regulators. IEEE J Solid-State Circuits 6:2–7

    Article  Google Scholar 

  4. Kuijk KE (1973) A precision reference voltage source. IEEE J Solid-State Circuits 8:222–226

    Article  Google Scholar 

  5. Brokaw AP (1974) A simple three-terminal IC bandgap reference. IEEE J Solid-State Circuits 9:388–393

    Article  Google Scholar 

  6. Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, New York. ISBN:140205257X

    Google Scholar 

  7. Song BS, Gray PR (1983) A precision curvature-compensated CMOS bandgap reference. IEEE J Solid-State Circuits 18:634–643

    Article  Google Scholar 

  8. Sansen WM, Op’t Eynde F, Steyaert M (1988) A CMOS temperature compensated current reference. IEEE J Solid-State Circuits 23:821–823

    Article  Google Scholar 

  9. Annema A-J (1999) Low-power bandgap references featuring DTMOSTs. IEEE J Solid-State Circuits 34:949–955

    Article  Google Scholar 

  10. Ge G, Zhang C, Hoogzaad G, Makinwa KAA (2011) A single-trim CMOS bandgap reference with a 3σ inaccuracy of ±0.15% from-40C to 125C. IEEE J Solid-State Circuits 46:2693–2701

    Article  Google Scholar 

  11. Banba H, Shiga H, Umezawa A, Miyaba T, Tanzawa T, Atsumi S, Sakui K (1999) A CMOS band-gap reference circuit with sub 1-V operation. IEEE J Solid-State Circuits 34:670–674

    Article  Google Scholar 

  12. Petrescu V, Pelgrom MJM, Veendrick HJM, Pavithran P, Wieling J (2006) Monitors for a signal integrity measurement system. In: 32nd European solid-state circuits conference, pp 122–125

    Google Scholar 

  13. Petrescu V, Pelgrom MJM, Veendrick HJM, Pavithran P, Wieling J (2006) A signal-integrity self-test concept for debugging nanometer CMOS ICs. In: IEEE international solid-state circuits conference, digest of technical papers, pp 544–545

    Google Scholar 

  14. Annema AJ, Goksun G (2012) A 0.0025 mm2 bandgap voltage reference for 1.1-V supply in standard 0.16-μm CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 364–365

    Google Scholar 

  15. Doyle J, Lee YJ, Kim Y-B, Wilsch H, Lombardi F (2004) A CMOS subbandgap reference circuit with 1-V power supply voltage. IEEE J Solid-State Circuits 39:252–255

    Article  Google Scholar 

  16. Fayomi CJB, Wirth GI, Achigui HF, Matsuzawa A (2010) Sub 1 V CMOS bandgap reference design techniques: a survey. Analog Integr Circ Sig Process 62:141–157

    Article  Google Scholar 

  17. Leung KN, Mok PKT (2002) A Sub-1-V 15-ppm/C CMOS bandgap voltage reference without requiring low threshold voltage device. IEEE J Solid-State Circuits 37:526–530

    Article  Google Scholar 

  18. Cabrini A, De Sandre G, Gobbi L, Malcovati P, Pasotti M, Poles M, Rigoni F, Torelli G (2005) A 1 V, 26 μW extended temperature range band-gap reference in 130-nm CMOS technology. In: IEEE European solid-state circuits conference, pp 503–506

    Google Scholar 

  19. Gunawan M, Meijer GCM, Fonderie J, Huijsing JH (1993) A curvature-corrected low-voltage bandgap reference. IEEE J Solid-State Circuits 28:667–669

    Article  Google Scholar 

  20. Huang HW, Hsieh C-Y, Chen K-H, Kuo B-Y (2008) A 1 V 16.9 ppm/C 250 nA switched-capacitor CMOS voltage reference. In: IEEE international solid-state circuits conference, digest of technical papers, pp 438–439

    Google Scholar 

  21. Blauschild RA, Tucci PA, Muller RS, Meyer RG (1978) A new NMOS temperature-stable voltage reference. IEEE J Solid-State Circuits 13:767–774

    Article  Google Scholar 

  22. Song H-J, Kim C-K (1993) A temperature-stabilized SOI voltage reference based on threshold voltage difference between enhancement and depletion NMOSFET’s. IEEE J Solid-State Circuits 28:671–677

    Article  Google Scholar 

  23. Annema AJ, Veldhorst P, Doornbos G, Nauta B (2009) A sub-1V bandgap voltage reference in 32nm finFET technology. In: IEEE international solid-state circuits conference, digest of technical papers, pp 332–333 7. Digital-to-Analog Conversion

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelgrom, M. (2017). Reference Circuits. In: Analog-to-Digital Conversion. Springer, Cham. https://doi.org/10.1007/978-3-319-44971-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44971-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44970-8

  • Online ISBN: 978-3-319-44971-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics