Skip to main content

Quantization

  • Chapter
  • First Online:
Analog-to-Digital Conversion
  • 5698 Accesses

Abstract

Quantization is the second main process in conversion. This chapter deals with the mathematical derivation of quantization in several resolution ranges. Quantization results in several specific parameters: integral and differential linearities and derived problems such as monotonicity.The signal-to-noise ratio is also affected by quantization. Some special topics are the effect of dither and the relation between differential non-linearity and signal-to-noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other coding schemes will appear when discussing the implementation of complex converters, e.g., locally ternary (three-level) coding can be used in full differential implementations. In error correction schemes a base lower than 2 is applied.

  2. 2.

    The IEEE has standardized a number of conversion terms in standards IEEE 1057 [48] and IEEE 1241 [49, 50].

  3. 3.

    Other binary code formats are discussed in Sect. 7.1.1

  4. 4.

    N. Blachman has mathematically analyzed many processes around quantization. His publications from 1960–1985 form a good starting point to dive deeper in this field, e.g., [52].

  5. 5.

    Note that in a formal sense just voltage-squared is calculated, which lacks the impedance level and the time span needed to reach the dimension of power: Watt or V2/\(\Omega \) s. In quantization theory “voltage-squared” power is only used to compare to another “voltage-squared” power, assuming that both relate to the same impedance level and the same time span. This quantization error becomes visible to an engineer (mostly) as part of a power spectrum. For that reason this book prefers the term quantization power instead of energy.

  6. 6.

    43.8 dB is a short hand for 4. 167 × 10−5 power ratio. Use the exponential notation in complex calculations.

  7. 7.

    There has been an extensive search for optimum dither signals in the 1960–1970s. After that era the interest for dither has reduced. The concept, however, still provides valuable insight, e.g., sigma-delta converters can be understood as low-resolution converters that generate their own dither.

  8. 8.

    A manipulation like this is aversely coined: “specmanship.”

  9. 9.

    Non-English speakers often confuse monotonic with monotonous which is synonymous to boring, dull, and uninteresting.

  10. 10.

    The author of this book was educated with the notion that “log” operations can only be performed on dimensionless quantities. Obviously this is not the case here.

  11. 11.

    Compared to Moore’s law for digital circuit where speed doubles and area and power halves for every generation (2 years) this is a meager result.

Bibliography

  1. van de Plassche R (1994) Integrated analog-to-digital and digital-to-analog converters. Kluwer Academic Publishers, Dordrecht. ISBN:0-7923-9436-4 (2nd edition. ISBN:1-4020-7500-6, The Netherlands, 2003)

    Google Scholar 

  2. Sansen W (1999) Distortion in elementary transistor circuits. IEEE Trans Circuits Syst II 46:315–325 4. Quantization

    Google Scholar 

  3. Reeves H (1942) A electric signaling system. US Patent 2-272-070, issued February 3, 1942. Also French Patent 852–183 issued 1938, and British Patent 538–860 issued 1939

    Google Scholar 

  4. IEEE (1994) IEEE Std 1057–1994 IEEE standard for digitizing waveform recorders

    Google Scholar 

  5. IEEE (2000) IEEE 1241–2000, Standard for terminology and test methods for analog-to-digital converters. IEEE Std 1241. ISBN:0-7381-2724-8, revision 2007

    Google Scholar 

  6. Tilden SJ, Linnenbrink TE, Green PJ (1999) Overview of IEEE-STD-1241 standard for terminology and test methods for analog-to-digital converters. In: Instrumentation and measurement technology conference, pp 1498–1503

    Google Scholar 

  7. Bennett WR (1948) Spectra of quantized signals. Bell Syst Tech J 27:446–472

    Article  MathSciNet  Google Scholar 

  8. Blachman N (1985) The intermodulation and distortion due to quantization of sinusoids. IEEE Trans Acoust Speech Signal Process 33:1417–1426

    Article  Google Scholar 

  9. Oude Alink MS, Kokkeler ABJ, Klumperink EAM, Rovers KC, Smit G, Nauta B (2009) Spurious-free dynamic range of a uniform quantizer. IEEE Trans Circuits Syst II: Express Briefs 56:434–438

    Article  Google Scholar 

  10. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inform Theory 28:129–137 (transcript from 1957 paper)

    Google Scholar 

  11. Max J (1960) Quantizing for minimum distortion. IRE Trans Inform Theory 6:7–12

    Article  MathSciNet  Google Scholar 

  12. Lipshitz SP, Wannamaker RA, Vanderkooy J (1992) Quantization and dither: a theoretical study. J Audio Eng Soc 40:355–375

    Google Scholar 

  13. Wannamaker RA, Lipshitz SP, Vanderkooy J, Wright JN (2000) A theory of nonsubtractive dither. IEEE Trans Signal Process 48:499–516

    Article  Google Scholar 

  14. Ceballos JL, Galton I, Temes GC (2005) Stochastic analog-to- digital conversion. In: IEEE midwest symposium circuits systems, pp 855–858

    Google Scholar 

  15. Walden RH (1999) Analog-to-digital converter survey and analysis. IEEE J Sel Areas Commun 17:539–550

    Article  Google Scholar 

  16. Vittoz E (1995) Low power low-voltage limitations and prospects in analog design. In: van de Plassche RJ (ed) Advances in analog circuit design. Kluwer Academic Publishers, Boston, p 3

    Chapter  Google Scholar 

  17. Dijkstra E, Nys O, Blumenkrantz E (1995) Low power oversampled A/D converters. In: van de Plassche RJ (ed) Advances in analog circuit design. Kluwer Academic Publishers, Boston, p 89

    Chapter  Google Scholar 

  18. Giotta D, Pessl P, Clara M, Klatzer W, Gaggl R (2004) Low-power 14-bit current steering DAC for ADSL applications in 0.13 μm CMOS. In: European solid-state circuits conference, pp 163–166 5. Accuracy

    Google Scholar 

  19. Lim Y, Flynn MP (2015) A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC. IEEE J Solid-State Circuits 50:2901–2911

    Article  Google Scholar 

  20. Schvan P, Pollex D, Wang S-C, Falt C, Ben-Hamida N (2006) A 22GS/s 5b ADC in 0.13μm SiGe BiCMOS. In: International solid-state circuits conference, digest of technical papers, pp 572–573

    Google Scholar 

  21. Scholtens PCS, Vertregt M (2002) A 6-b 1.6-Gsample/s flash ADC in 0.18μm CMOS using averaging termination. IEEE J Solid-State Circuits 37:1599–1609

    Article  Google Scholar 

  22. Shimizu Y, Murayama S, Kudoh K, Yatsuda H, Ogawa A (2006) A 30mW 12b 40MS/s subranging ADC with a high-gain offset-canceling positive-feedback amplifier in 90nm digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 802–803

    Google Scholar 

  23. Chai Y, Wu J-T (2012) A 5.37mW 10b 200MS/s dual-path pipelined ADC. In: International solid-state circuits conference, digest of technical papers, pp 462–463

    Google Scholar 

  24. Geelen G, Paulus E, Simanjuntak D, Pastoor H, Verlinden R (2006) A 90nm CMOS 1.2V 10b power and speed programmable pipelined ADC with 0.5pJ/conversion-step. In: International solid-state circuits conference, digest of technical papers, pp 214–215

    Google Scholar 

  25. Brooks L, Lee H-S (2009) A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB. In: International solid-state circuits conference, digest of technical papers, pp 166–167

    Google Scholar 

  26. Craninckx J, Van der Plas G (2007) A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm Digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 246-247

    Google Scholar 

  27. van Elzakker M, van Tuijl E, Geraedts P, Schinkel D, Klumperink E, Nauta B (2008) A 1.9μW 4.4fJ/conversion-step 10b 1MS/s charge-redistribution ADC. In: International solid-state circuits conference, digest of technical papers, pp 244–245

    Google Scholar 

  28. Harpe PJA, Cantatore E, van Roermund AHM (2014) An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. In: International solid-state circuits conference, digest of technical papers, pp 194–195

    Google Scholar 

  29. Hesener M, Ficher T, Hanneberg A, Herbison D, Kuttner F, Wenskel H (2007) A 14b 40MS/s redundant SAR ADC with 480 MHz in 0.13 pm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 248–249

    Google Scholar 

  30. Pelgrom MJM, van Rens AC, Vertregt M, Dijkstra MB (1994) A 25-Ms/s 8-bit CMOS A/D converter for embedded application. IEEE J Solid-State Circuits 29:879–886

    Article  Google Scholar 

  31. Naraghi S, Courcy M, Flynn MP (2009) A 9b 14 μW 0.06 mm2 PPM ADC in 90nm digital CMOS. In: IEEE International solid-state circuits conference digest of technical papers, pp 168–169

    Google Scholar 

  32. Doris K, Janssen E, Nani C, Zanikopoulos A, Van der Wiede G (2011) A 480 mW 2.6 GS/s 10b Time-Interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS. IEEE J Solid-State Circuits 46:2821–2833

    Article  Google Scholar 

  33. Hsu C-C, Huang F-C, Shih C-Y, Huang C-C, Lin Y-H, Lee C-C, Razavi B (2007) An 11b 800MS/s time-interleaved ADC with digital background calibration. In: International solid-state circuits conference, digest of technical papers, pp 164–165

    Google Scholar 

  34. Brandolini M et al (2015) A 5 GS/s 150 mW 10 b SHA-less pipelined/SAR hybrid ADC for direct-sampling systems in 28 nm CMOS. IEEE J Solid-State Circuits 50:2922–2934

    Article  Google Scholar 

  35. Verma S, Kasapi A, Lee L, Liu D (2013) A 10.3 GS/s 6b flash ADC for 10G ethernet applications. In: International solid-state circuits conference, digest of technical papers, pp 462–463

    Google Scholar 

  36. Setterberg B et al (2013) A 14 b 2.5 GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction. In: International solid-state circuits conference, digest of technical papers, pp 466–467 10. Sigma-Delta Conversion

    Google Scholar 

  37. Christen T, Burger T, Huang Q (2007) A 0.13 μm CMOS EDGE/UMTS/WLAN tri-mode ADC with-92dB THD. In: International solid-state circuits conference, digest of technical papers, pp 240–241

    Google Scholar 

  38. Chae YC, Souri K, Makinwa KAA (2013) A 6.3 μW 20bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE J Solid-State Circuits 48:3019–3027

    Article  Google Scholar 

  39. Dong Y, Yang W, Schreier R et al (2014) A continuous-time 0–3 MASH ADC achieving 88 dB DR with 53 MHz BW in 28 nm CMOS. IEEE J Solid-State Circuits 49:2868–2877

    Article  Google Scholar 

  40. Bolatkale M, Breems LJ, Rutten R, Makinwa KAA (2011) A 4 GHz continuous-time ADC with 70 dB DR and 74 dBFS THD in 125 MHz BW. IEEE J Solid-State Circuits 46:2857–2868

    Article  Google Scholar 

  41. Shettigar P, Pavan S (2012) A 15 mW 3.6GS/s CT-SD ADC with 36 MHz bandwidth and 83 dB DR in 90 nm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 156–157

    Google Scholar 

  42. Schreier R, Abaskharoun N, Shibata H, Mehr I, Rose S, Paterson D (2006) A 375mW quadrature bandpass delta sigma ADC with 90dB DR and 8.5MHz BW at 44MHz. In: International solid-state circuits conference, digest of technical papers, pp 141–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelgrom, M. (2017). Quantization. In: Analog-to-Digital Conversion. Springer, Cham. https://doi.org/10.1007/978-3-319-44971-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44971-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44970-8

  • Online ISBN: 978-3-319-44971-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics