Skip to main content

Resistance to Corruption of General Strategic Argumentation

  • Conference paper
  • First Online:
PRIMA 2016: Principles and Practice of Multi-Agent Systems (PRIMA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9862))

Abstract

[16, 18] introduced a model of corruption within strategic argumentation, and showed that some forms of strategic argumentation are resistant to two forms of corruption: collusion and espionage. Such a model provides a (limited) basis on which to trust agents acting on our behalf. However, that work only addressed the grounded and stable argumentation semantics. Here we extend this work to several other well-motivated semantics. We must consider a greater number of strategic aims that players may have, as well as the greater variety of semantics. We establish the complexity of several computational problems related to corruption in strategic argumentation, for the aims and semantics we study. From these results we identify that strategic argumentation under the aims and semantics we study is resistant to espionage. Resistance to collusion varies according to the player’s aim and the argumentation semantics, and we present a complete picture for the aims and semantics we address.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each player’s move is a normal expansion [4].

  2. 2.

    For a similar argumentation game, results of [20] suggest games are strategy-proof only under very constraining conditions.

References

  1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework for defeasible logics. In: AAAI/IAAI, pp. 405–410. AAAI Press/The MIT Press (2000)

    Google Scholar 

  2. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). http://dx.doi.org/10.1017/S0269888911000166

    Article  Google Scholar 

  3. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: The computational difficulty of manipulating an election. Soc. Choice Welf. 6(3), 227–241 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumann, R., Brewka, G.: Expanding argumentation frameworks: enforcing and monotonicity results. In: COMMA, pp. 75–86 (2010)

    Google Scholar 

  5. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theor. Comput. Sci. 170(1–2), 209–244 (1996). http://dx.doi.org/10.1016/S0304-3975(96)80707–9

    Article  MathSciNet  MATH  Google Scholar 

  7. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18), 1559–1591 (2009). http://dx.doi.org/10.1016/j.artint.2009.09.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif. Intell. 141(1/2), 187–203 (2002). http://dx.doi.org/10.1016/S0004-3702(02)00261–8

    Article  MathSciNet  MATH  Google Scholar 

  10. Dunne, P.E., Dvořák, W., Woltran, S.: Parametric properties of ideal semantics. Artif. Intell. 202, 1–28 (2013). http://dx.doi.org/10.1016/j.artint.2013.06.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Dvořák, W.: On the complexity of computing the justification status of an argument. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 32–49. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010). http://dx.doi.org/10.1016/j.ipl.2010.04.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Gordon, T.F., Walton, D.: Proof burdens and standards. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 239–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: Strategic argumentation is NP-complete. In: Proceedings of the European Conference on Artificial Intelligence, pp. 399–404 (2014)

    Google Scholar 

  15. Johnson, D.S.: A catalog of complexity classes. In: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, pp. 67–161. Elsevier (1990)

    Google Scholar 

  16. Maher, M.J.: Complexity of exploiting privacy violations in strategic argumentation. In: Proceedings of the Pacific Rim International Conference on Artificial Intelligence, pp. 523–535 (2014)

    Google Scholar 

  17. Maher, M.J.: Relating concrete argumentation formalisms and abstract argumentation. In: Technical Communications of International Conference on Logic Programming (2015)

    Google Scholar 

  18. Maher, M.J.: Resistance to corruption of strategic argumentation. In: AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  19. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument Comput. 1, 93–124 (2010)

    Article  Google Scholar 

  20. Rahwan, I., Larson, K., Tohmé, F.A.: A characterisation of strategy-proofness for grounded argumentation semantics. In: Boutilier, C. (ed.) IJCAI, pp. 251–256 (2009)

    Google Scholar 

  21. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991). http://dx.doi.org/10.1137/0220053

    Article  MathSciNet  MATH  Google Scholar 

  22. Torán, J.: Complexity classes defined by counting quantifiers. J. ACM 38(3), 753–774 (1991). http://doi.acm.org/10.1145/116825.116858

    Article  MathSciNet  MATH  Google Scholar 

  23. Wagner, K.W.: The complexity of combinatorial problems with succinct input representation. Acta Inf. 23(3), 325–356 (1986). http://dx.doi.org/10.1007/BF00289117

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, Y., Caminada, M.: A labelling-based justification status of arguments. Stud. Logic 3(4), 12–29 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Maher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Maher, M.J. (2016). Resistance to Corruption of General Strategic Argumentation. In: Baldoni, M., Chopra, A., Son, T., Hirayama, K., Torroni, P. (eds) PRIMA 2016: Principles and Practice of Multi-Agent Systems. PRIMA 2016. Lecture Notes in Computer Science(), vol 9862. Springer, Cham. https://doi.org/10.1007/978-3-319-44832-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44832-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44831-2

  • Online ISBN: 978-3-319-44832-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics